Segmentation of bone from ADC maps in pelvis area using local level-set and prior information

F. S. Nezhad, H. S. Rad, H. Soltanian-Zadeh
{"title":"Segmentation of bone from ADC maps in pelvis area using local level-set and prior information","authors":"F. S. Nezhad, H. S. Rad, H. Soltanian-Zadeh","doi":"10.1109/ISBI.2014.6868133","DOIUrl":null,"url":null,"abstract":"Lack of anatomical details in diffusion weighted magnetic resonance images limits their utilization and treatment response monitoring, shadowing the useful information they contain. Contemporary methods of utilizing these images are based on manual selection of region of interest, raising concerns about susceptibility of manual ROI placement to human errors, and limiting the investigation in specific spatial regions. In contrary to the whole body bone marrow segmentation with the luxury to include all the diseased bone marrow, high profile analysis could be applied. In this paper, we propose an automatic method for segmentation of pelvic bone with possible bone metastasis in apparent diffusion coefficient (ADC) maps. This method is a multi-parametric registration-segmentation method, taking advantage of prior information of the pelvic anatomy. Intensity inhomogeneity in the bone structure caused by bone marrow metastasis challenges the segmentation process on anatomical MR images. Specifically, we first build a probability map which provides shape and volume constraints for the segmentation. Then, T1-weighted MR images are rigidly registered to the probability map, and then the registered T1-weighted image is non-rigidly registered to its' corresponding ADC maps. Finally, the probability map is coupled with a local level set framework for automatic pelvic bone segmentation of the T1-weighted images. The segmented bone is used as a mask on the ADC map. The method is validated on 10 pairs of ADC/T1 images of breast cancer with bone marrow metastases patients. Both quantitative and qualitative evaluation results demonstrate the validity of the proposed method.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lack of anatomical details in diffusion weighted magnetic resonance images limits their utilization and treatment response monitoring, shadowing the useful information they contain. Contemporary methods of utilizing these images are based on manual selection of region of interest, raising concerns about susceptibility of manual ROI placement to human errors, and limiting the investigation in specific spatial regions. In contrary to the whole body bone marrow segmentation with the luxury to include all the diseased bone marrow, high profile analysis could be applied. In this paper, we propose an automatic method for segmentation of pelvic bone with possible bone metastasis in apparent diffusion coefficient (ADC) maps. This method is a multi-parametric registration-segmentation method, taking advantage of prior information of the pelvic anatomy. Intensity inhomogeneity in the bone structure caused by bone marrow metastasis challenges the segmentation process on anatomical MR images. Specifically, we first build a probability map which provides shape and volume constraints for the segmentation. Then, T1-weighted MR images are rigidly registered to the probability map, and then the registered T1-weighted image is non-rigidly registered to its' corresponding ADC maps. Finally, the probability map is coupled with a local level set framework for automatic pelvic bone segmentation of the T1-weighted images. The segmented bone is used as a mask on the ADC map. The method is validated on 10 pairs of ADC/T1 images of breast cancer with bone marrow metastases patients. Both quantitative and qualitative evaluation results demonstrate the validity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部水平集和先验信息对骨盆区域ADC图进行骨分割
在扩散加权磁共振图像中缺乏解剖细节限制了它们的利用和治疗反应监测,遮蔽了它们包含的有用信息。利用这些图像的当代方法是基于人工选择感兴趣的区域,这引起了对人工ROI放置对人为错误的敏感性的担忧,并且限制了特定空间区域的调查。与包括所有患病骨髓的全身骨髓分割不同,可以采用高姿态分析。本文提出了一种在表观扩散系数(ADC)图中对可能存在骨转移的骨盆骨进行自动分割的方法。该方法是一种多参数配准分割方法,利用了骨盆解剖的先验信息。骨髓转移引起的骨结构强度不均匀性对解剖MR图像的分割提出了挑战。具体来说,我们首先建立一个概率图,为分割提供形状和体积约束。然后,将t1加权MR图像严格配准到概率图上,再将配准后的t1加权图像非严格配准到对应的ADC图上。最后,将概率图与局部水平集框架相结合,对t1加权图像进行骨盆骨自动分割。分割后的骨骼用作ADC地图上的掩模。在10对乳腺癌骨髓转移患者的ADC/T1图像上验证了该方法。定量和定性评价结果均证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1