Artificial neural network based macromodeling approach for two-port RF MEMS resonating structures

Yongjae Lee, Yong-hwa Park, F. Niu, D. Filipović
{"title":"Artificial neural network based macromodeling approach for two-port RF MEMS resonating structures","authors":"Yongjae Lee, Yong-hwa Park, F. Niu, D. Filipović","doi":"10.1109/ICNSC.2005.1461198","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient approach for analysis, design, and optimization of two-port radio frequency microelectromechanical systems (RF MEMS) resonating structures. Methodology utilizes finite element method (FEM) for the prediction of electromechanical responses and fast/accurate mapping with an artificial neural networks (ANNs) technique, toward a final goal - a generic macromodel compatible with modern circuit computer aided design (CAD) tools. Thus, instead of using memory and time demanding full-wave analysis or more extensive and expensive design process using multiple fabrication cycles, a simple yet accurate circuit simulator compatible modeling and optimization procedure is developed.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose an efficient approach for analysis, design, and optimization of two-port radio frequency microelectromechanical systems (RF MEMS) resonating structures. Methodology utilizes finite element method (FEM) for the prediction of electromechanical responses and fast/accurate mapping with an artificial neural networks (ANNs) technique, toward a final goal - a generic macromodel compatible with modern circuit computer aided design (CAD) tools. Thus, instead of using memory and time demanding full-wave analysis or more extensive and expensive design process using multiple fabrication cycles, a simple yet accurate circuit simulator compatible modeling and optimization procedure is developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的双端口射频MEMS谐振结构宏观建模方法
在本文中,我们提出了一种分析、设计和优化双端口射频微机电系统(RF MEMS)谐振结构的有效方法。方法利用有限元法(FEM)预测机电响应和人工神经网络(ANNs)技术的快速/准确映射,实现最终目标-与现代电路计算机辅助设计(CAD)工具兼容的通用宏观模型。因此,代替使用内存和时间要求高的全波分析或使用多个制造周期的更广泛和昂贵的设计过程,开发了一个简单而准确的电路模拟器兼容建模和优化程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic robust stability analysis for Markovian jumping neural networks with time delays Modeling and performance evaluation of collision resolution algorithms for LonWorks control networks The organization model research of SM crowd Forced and constrained consensus among cooperating agents Routing in stochastic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1