Light illumination effect in AIZTO/IZO dual-channel TFTs

Hyun-Sik Choi, Jong-Heon Yang, J. Choi, Chi-Sun Hwang, S. Cho, S. Jeon
{"title":"Light illumination effect in AIZTO/IZO dual-channel TFTs","authors":"Hyun-Sik Choi, Jong-Heon Yang, J. Choi, Chi-Sun Hwang, S. Cho, S. Jeon","doi":"10.1109/AM-FPD.2016.7543646","DOIUrl":null,"url":null,"abstract":"In oxide thin-film transistors (TFTs), light illumination effect is a big concern due to its operating condition. Light illumination can change many electrical properties in oxide TFTs such as mobility and threshold voltage (Vth). In many researches, Oxygen vacancy is suspected as a main cause of the changes by light illumination. Recently, the back channel formation by field-induced macroscopic barrier model is reported under light illumination. This is also related to Oxygen vacancy. In this letter, we investigate the gradual changes in DC and CV characteristics depending on the dual-channel thicknesses. For this purpose, we use the aluminum-doped indium zinc tin oxide (AIZTO)/indium zinc oxide (IZO) dual-channel TFTs. The main goal of this paper is to find the main cause of the changes by light illumination in various dual-channel thicknesses.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In oxide thin-film transistors (TFTs), light illumination effect is a big concern due to its operating condition. Light illumination can change many electrical properties in oxide TFTs such as mobility and threshold voltage (Vth). In many researches, Oxygen vacancy is suspected as a main cause of the changes by light illumination. Recently, the back channel formation by field-induced macroscopic barrier model is reported under light illumination. This is also related to Oxygen vacancy. In this letter, we investigate the gradual changes in DC and CV characteristics depending on the dual-channel thicknesses. For this purpose, we use the aluminum-doped indium zinc tin oxide (AIZTO)/indium zinc oxide (IZO) dual-channel TFTs. The main goal of this paper is to find the main cause of the changes by light illumination in various dual-channel thicknesses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIZTO/IZO双通道tft的光照效果
在氧化薄膜晶体管(TFTs)中,由于其工作条件的关系,光照效果是一个很大的问题。光照可以改变氧化物tft的许多电学性质,如迁移率和阈值电压(Vth)。在许多研究中,氧空位被怀疑是光照射变化的主要原因。近年来报道了光照射下场致宏观势垒模型形成的背道。这也与氧空位有关。在这封信中,我们研究了DC和CV特性随双通道厚度的逐渐变化。为此,我们采用掺杂铝的铟锌锡氧化物(AIZTO)/铟锌氧化物(IZO)双通道tft。本文的主要目的是找出不同双通道厚度随光照变化的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel a-IGZO pixel circuit adopting external circuit for use in 3-D AMOLED displays Recent progress on perovskite solar cells and our materials science In-cell capacitive touch panel structures and their readout circuits Comparative study on light-induced negative-bias stress stabilities in amorphous In-Ga-Zn-O thin film transistors with photoinduced transient spectroscopy Reduction of graphene oxide by atomic hydrogen annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1