Maximum Power Control and Optimization of Switched Reluctance Generators for Wind Turbines

Gökhan Parla, M. Yildirim, M. Özdemir
{"title":"Maximum Power Control and Optimization of Switched Reluctance Generators for Wind Turbines","authors":"Gökhan Parla, M. Yildirim, M. Özdemir","doi":"10.24012/dumf.1232026","DOIUrl":null,"url":null,"abstract":"In this paper, a maximum power control and optimization of a 4-phase 8/6-pole Switched Reluctance Generator (SRG) are realized for a wind energy conversion system by using MATLAB/Simulink. Unlike conventional generators, using of the SRGs has increased in variable speed wind turbines due to important advantages such as lower copper losses, simple structure, flexible control, and a good performance in a wide speed range. However, since SRGs work with switching logic, their torque production is fluctuating and optimum turn-on/turn-off angles of the phases must be determined to work as a generator. Therefore, in this study, these angles are optimized based on the speed of the SRG and Maximum Power Point Tracking (MPPT) is realized. Besides, a voltage control is provided by keeping the DC bus voltage at the output of the system constant at the desired value with the help of a chopper controlled unloader. The results obtained from the optimized model for variable wind speed conditions are compared with that of the unoptimized model. It is observed that the SRGs can work more stable with a proper optimization method and the power obtained from the system follows the maximum output power.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1232026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a maximum power control and optimization of a 4-phase 8/6-pole Switched Reluctance Generator (SRG) are realized for a wind energy conversion system by using MATLAB/Simulink. Unlike conventional generators, using of the SRGs has increased in variable speed wind turbines due to important advantages such as lower copper losses, simple structure, flexible control, and a good performance in a wide speed range. However, since SRGs work with switching logic, their torque production is fluctuating and optimum turn-on/turn-off angles of the phases must be determined to work as a generator. Therefore, in this study, these angles are optimized based on the speed of the SRG and Maximum Power Point Tracking (MPPT) is realized. Besides, a voltage control is provided by keeping the DC bus voltage at the output of the system constant at the desired value with the help of a chopper controlled unloader. The results obtained from the optimized model for variable wind speed conditions are compared with that of the unoptimized model. It is observed that the SRGs can work more stable with a proper optimization method and the power obtained from the system follows the maximum output power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风电开关磁阻发电机最大功率控制与优化
本文利用MATLAB/Simulink实现了风电转换系统中4相8/6极开关磁阻发电机(SRG)的最大功率控制和优化。与传统发电机不同,由于具有铜损耗低、结构简单、控制灵活以及在宽转速范围内性能良好等重要优点,srg在变速风力涡轮机中的应用有所增加。然而,由于srg使用开关逻辑工作,其扭矩产生是波动的,必须确定相的最佳开/关角才能作为发电机工作。因此,在本研究中,根据SRG的速度对这些角度进行优化,实现了最大功率点跟踪(MPPT)。此外,电压控制是通过在斩波控制卸载器的帮助下保持系统输出端的直流母线电压恒定在期望值来提供的。对变风速条件下优化模型的结果与未优化模型的结果进行了比较。结果表明,采用适当的优化方法可以使SRGs工作更加稳定,并且系统获得的功率遵循最大输出功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1