Rolling bearing fault feature extraction based on maximum correlated kurtosis deconvolution and improved autocorrelation spectral kurtograph

Chencheng He, Wenbo Wang
{"title":"Rolling bearing fault feature extraction based on maximum correlated kurtosis deconvolution and improved autocorrelation spectral kurtograph","authors":"Chencheng He, Wenbo Wang","doi":"10.1117/12.2689626","DOIUrl":null,"url":null,"abstract":"In order to further improve the separation and detection accuracy of bearing fault characteristics, A new method for early fault diagnosis of rolling bearings based on Maximum Correlated Kurtosis Deconvolution and autocorrelation kurtograph was proposed. Firstly, the vibration signal of bearing fault is denoised by Maximum Correlated Kurtosis Deconvolution; Then, the improved autocorrelation spectral kurtograph is used to select the optimal frequency center and bandwidth of fault features. According to the optimal frequency center and bandwidth, the band pass filtering is carried out to remove noise and random pulse irrelevant components in the band signal. Finally, the sub-signal after bandpass filtering is analyzed by envelope spectrum, identify fault frequency and realize early fault diagnosis of rolling bearing. In the experiment, different types of bearing fault data verify the effectiveness of the proposed method.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further improve the separation and detection accuracy of bearing fault characteristics, A new method for early fault diagnosis of rolling bearings based on Maximum Correlated Kurtosis Deconvolution and autocorrelation kurtograph was proposed. Firstly, the vibration signal of bearing fault is denoised by Maximum Correlated Kurtosis Deconvolution; Then, the improved autocorrelation spectral kurtograph is used to select the optimal frequency center and bandwidth of fault features. According to the optimal frequency center and bandwidth, the band pass filtering is carried out to remove noise and random pulse irrelevant components in the band signal. Finally, the sub-signal after bandpass filtering is analyzed by envelope spectrum, identify fault frequency and realize early fault diagnosis of rolling bearing. In the experiment, different types of bearing fault data verify the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大相关峰度反褶积和改进自相关谱峰图的滚动轴承故障特征提取
为了进一步提高轴承故障特征的分离和检测精度,提出了一种基于最大相关峰度反褶积和自相关峰度图的滚动轴承早期故障诊断新方法。首先,采用最大相关峰度反卷积法对轴承故障振动信号进行降噪;然后,利用改进的自相关谱峭度图选择故障特征的最优频率中心和带宽。根据最优的频率中心和带宽进行带通滤波,去除带信号中的噪声和随机脉冲无关分量。最后对带通滤波后的子信号进行包络谱分析,识别故障频率,实现滚动轴承的早期故障诊断。在实验中,不同类型的轴承故障数据验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A smart brain controlled wheelchair based on TGAM Multi-direction prediction based on SALSTM model for ship motion Study on heart disease prediction based on SVM-GBDT hybrid model Research on intelligent monitoring of roof distributed photovoltaics based on high-reliable power line and wireless communication Design of low-power acceleration processor for convolutional neural networks based on RISC-V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1