Evaluation of machine learning methods for the long-term prediction of cardiac diseases

A. Schlemmer, Henning Zwirnmann, M. Zabel, U. Parlitz, S. Luther
{"title":"Evaluation of machine learning methods for the long-term prediction of cardiac diseases","authors":"A. Schlemmer, Henning Zwirnmann, M. Zabel, U. Parlitz, S. Luther","doi":"10.1109/ESGCO.2014.6847567","DOIUrl":null,"url":null,"abstract":"We evaluate several machine learning algorithms in the context of long-term prediction of cardiac diseases. Results from applying K Nearest Neighbors Classifiers (KNN), Support Vector Machines (SVM) and Random Forests (RF) to data from a cardiological long-term study suggests that multivariate methods can significantly improve classification results. SVMs were found to yield the best results in Matthews Correlation Coefficient and are most stable with respect to a varying number of features.","PeriodicalId":385389,"journal":{"name":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESGCO.2014.6847567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We evaluate several machine learning algorithms in the context of long-term prediction of cardiac diseases. Results from applying K Nearest Neighbors Classifiers (KNN), Support Vector Machines (SVM) and Random Forests (RF) to data from a cardiological long-term study suggests that multivariate methods can significantly improve classification results. SVMs were found to yield the best results in Matthews Correlation Coefficient and are most stable with respect to a varying number of features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估机器学习方法对心脏疾病的长期预测
我们评估了几种机器学习算法在心脏疾病的长期预测背景下。将K近邻分类器(KNN)、支持向量机(SVM)和随机森林(RF)应用于心脏病学长期研究数据的结果表明,多变量方法可以显著提高分类结果。发现支持向量机在马修斯相关系数中产生最好的结果,并且相对于不同数量的特征是最稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuTE: A new Matlab toolbox for estimating the multivariate Transfer entropy in physiological variability series Relationship between entropy and symbolic analysis indices of heart rate variability in patients with coronary artery disease with and without diabetes mellitus The analysis of linear/nonlinear coupling between heart rate and QT intervals Binary Symbolic Dynamics of Fetal Heart Rate Reflects Individual Gestational Development Study of electrogram organization and synchronization in paroxysmal and persistent/permanent atrial fibrillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1