Thermal state estimation based on Assisted Ensemble Kalman Filter

Hiroto Tanaka, T. Misaka, Koji Fujita, H. Nagai
{"title":"Thermal state estimation based on Assisted Ensemble Kalman Filter","authors":"Hiroto Tanaka, T. Misaka, Koji Fujita, H. Nagai","doi":"10.1299/TRANSJSME.21-00010","DOIUrl":null,"url":null,"abstract":"Thermal analysis of spacecraft is one of the most important processes to ensure the safety of spacecraft systems. However, the thermal mathematical model has uncertainty such as thermal contact conductance or thermal optical properties. These uncertain parameters in the model are non-negligible for long-term missions because these parameters can change during operation on orbit. Despite the uncertainties, the spacecraft system has only a few onboard temperature sensors compared to large and complex systems. In this study, an advanced thermal analysis method based on data assimilation is proposed to estimate the thermal state of a complex system with limited temperature data. Firstly, this paper describes a new state estimation algorithm called Assisted Ensemble Kalman Filter, which is an advanced state estimation algorithm based on Ensemble Kalman Filter (EnKF). Here, an external estimation algorithm by calculating the heat balance equation was applied to the conventional method to improve the estimation performance of the EnKF. Secondly, we propose a new parameter that indicates observability based on heat flux and temperature sensitivity, and the influence of temperature sensor location on estimation performance was discussed. These proposed approaches were applied to a simple thermal mathematical model, and numerical experiments have confirmed their availability.","PeriodicalId":341040,"journal":{"name":"Transactions of the JSME (in Japanese)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the JSME (in Japanese)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/TRANSJSME.21-00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thermal analysis of spacecraft is one of the most important processes to ensure the safety of spacecraft systems. However, the thermal mathematical model has uncertainty such as thermal contact conductance or thermal optical properties. These uncertain parameters in the model are non-negligible for long-term missions because these parameters can change during operation on orbit. Despite the uncertainties, the spacecraft system has only a few onboard temperature sensors compared to large and complex systems. In this study, an advanced thermal analysis method based on data assimilation is proposed to estimate the thermal state of a complex system with limited temperature data. Firstly, this paper describes a new state estimation algorithm called Assisted Ensemble Kalman Filter, which is an advanced state estimation algorithm based on Ensemble Kalman Filter (EnKF). Here, an external estimation algorithm by calculating the heat balance equation was applied to the conventional method to improve the estimation performance of the EnKF. Secondly, we propose a new parameter that indicates observability based on heat flux and temperature sensitivity, and the influence of temperature sensor location on estimation performance was discussed. These proposed approaches were applied to a simple thermal mathematical model, and numerical experiments have confirmed their availability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于辅助集合卡尔曼滤波的热状态估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wave analysis and control of two-dimensionally connected damped mass-spring systems (Analysis based on analytic properties of secondary constants) Simulation of sintering ceramics based on Master Sintering Curve Thermal state estimation based on Assisted Ensemble Kalman Filter A trial of a poster-based online academic conference using Facebook as a platform (Validation of Robomech 2020) Effect of layer thickness of prepreg on static and dynamic flexural properties of continuous carbon fiber reinforced polyamide 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1