{"title":"Adaptive Sleep/Wake Classification Based on Cardiorespiratory Signals for Wearable Devices","authors":"W. Karlen, C. Mattiussi, D. Floreano","doi":"10.1109/BIOCAS.2007.4463344","DOIUrl":null,"url":null,"abstract":"In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.