Genetic Generative Information Retrieval

Hrishikesh Kulkarni, Zachary Young, Nazli Goharian, O. Frieder, Sean MacAvaney
{"title":"Genetic Generative Information Retrieval","authors":"Hrishikesh Kulkarni, Zachary Young, Nazli Goharian, O. Frieder, Sean MacAvaney","doi":"10.1145/3573128.3609340","DOIUrl":null,"url":null,"abstract":"Documents come in all shapes and sizes and are created by many different means, including now-a-days, generative language models. We demonstrate that a simple genetic algorithm can improve generative information retrieval by using a document's text as a genetic representation, a relevance model as a fitness function, and a large language model as a genetic operator that introduces diversity through random changes to the text to produce new documents. By \"mutating\" highly-relevant documents and \"crossing over\" content between documents, we produce new documents of greater relevance to a user's information need --- validated in terms of estimated relevance scores from various models and via a preliminary human evaluation. We also identify challenges that demand further study.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3609340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Documents come in all shapes and sizes and are created by many different means, including now-a-days, generative language models. We demonstrate that a simple genetic algorithm can improve generative information retrieval by using a document's text as a genetic representation, a relevance model as a fitness function, and a large language model as a genetic operator that introduces diversity through random changes to the text to produce new documents. By "mutating" highly-relevant documents and "crossing over" content between documents, we produce new documents of greater relevance to a user's information need --- validated in terms of estimated relevance scores from various models and via a preliminary human evaluation. We also identify challenges that demand further study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传生成信息检索
文档有各种形状和大小,并且通过许多不同的方式创建,包括现在的生成语言模型。我们证明了一个简单的遗传算法可以通过使用文档文本作为遗传表示,将关联模型作为适应度函数,将大型语言模型作为遗传算子,通过随机更改文本来引入多样性以产生新文档,从而改进生成信息检索。通过“突变”高度相关的文档和“跨越”文档之间的内容,我们产生了与用户信息需求更相关的新文档——根据各种模型的估计相关性得分和通过初步的人工评估进行验证。我们还确定了需要进一步研究的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OntG-Bart: Ontology-Infused Clinical Abstractive Summarization Deep-learning for dysgraphia detection in children handwritings Addressing the gap between current language models and key-term-based clustering YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition Automatically Labeling Cyber Threat Intelligence reports using Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1