Parallel multiple observer siting on terrain

Wenli Li, W. Randolph Franklin, Daniel N. Benedetti, S. V. G. Magalhães
{"title":"Parallel multiple observer siting on terrain","authors":"Wenli Li, W. Randolph Franklin, Daniel N. Benedetti, S. V. G. Magalhães","doi":"10.1145/2666310.2666486","DOIUrl":null,"url":null,"abstract":"This paper presents the optimization and parallelization of the multiple observer siting program, originally developed by Franklin and Vogt. Siting is a compute-intensive application with a large amount of inherent parallelism. The advantage of parallelization is not only a faster program but also the ability to solve bigger problems. We have parallelized the program using two different techniques: OpenMP, using multi-core CPUs, and CUDA, using a general purpose graphics processing unit (GPGPU). Experiment results show that both techniques are very effective. Using the OpenMP program, we are able to site tens of thousands of observers on a 16385 × 16385 terrain in less than 2 minutes, on our workstation with two CPUs and one GPU. The CUDA program achieves the same in about 30 seconds.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the optimization and parallelization of the multiple observer siting program, originally developed by Franklin and Vogt. Siting is a compute-intensive application with a large amount of inherent parallelism. The advantage of parallelization is not only a faster program but also the ability to solve bigger problems. We have parallelized the program using two different techniques: OpenMP, using multi-core CPUs, and CUDA, using a general purpose graphics processing unit (GPGPU). Experiment results show that both techniques are very effective. Using the OpenMP program, we are able to site tens of thousands of observers on a 16385 × 16385 terrain in less than 2 minutes, on our workstation with two CPUs and one GPU. The CUDA program achieves the same in about 30 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位于地形上的平行多观察者
本文介绍了由Franklin和Vogt最初开发的多观测点定位程序的优化和并行化。站点是具有大量固有并行性的计算密集型应用程序。并行化的优点不仅是程序更快,而且能够解决更大的问题。我们使用两种不同的技术并行化程序:使用多核cpu的OpenMP和使用通用图形处理单元(GPGPU)的CUDA。实验结果表明,这两种方法都是非常有效的。使用OpenMP程序,我们能够在不到2分钟的时间内在一个16385 × 16385的地形上定位成千上万的观察者,我们的工作站有两个cpu和一个GPU。CUDA程序在大约30秒内实现相同的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1