Design optimization of the optical receiver in transcutaneous telemetric links

Tianyi Liu, J. Anders, M. Ortmanns
{"title":"Design optimization of the optical receiver in transcutaneous telemetric links","authors":"Tianyi Liu, J. Anders, M. Ortmanns","doi":"10.1109/BIOCAS.2013.6679710","DOIUrl":null,"url":null,"abstract":"This paper presents a design methodology for an optimization of the optical receiver in a neural recording system. In the transcutaneous optical telemetric link (TOTL) system, light/tissue interaction produces significant scattering of the transmitted photons. Therefore, in order to increase the transmission efficiency, it is in principle advantageous to use a photodiode with a larger size to collect more scattered photons. The photodiode size, however, is limited by the bandwidth requirement. In this paper, we derive a mathematical expression of the maximum photodiode size in the presence of constraints imposed by its bias voltage and the receiver bandwidth. A numerical example using real-world TOTL system parameters is given to demonstrate the design methodology. The trade off between transmission efficiency, noise and inter-symbol interference (ISI) in terms of the 3-dB bandwidth of the receiver is investigated. To this end, receivers with bandwidth about 4/3, 3/3, 2/3 and 1/3 of the data rate are compared with respect to the sensitivity. It was found that the receiver bandwidth of 2/3 of the data rate achieves the highest sensitivity for thin tissue (2 mm) and that a receiver bandwidth of 1/3 of the data rate is preferable for thicker tissues (5 and 8 mm).","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"47 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2013.6679710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a design methodology for an optimization of the optical receiver in a neural recording system. In the transcutaneous optical telemetric link (TOTL) system, light/tissue interaction produces significant scattering of the transmitted photons. Therefore, in order to increase the transmission efficiency, it is in principle advantageous to use a photodiode with a larger size to collect more scattered photons. The photodiode size, however, is limited by the bandwidth requirement. In this paper, we derive a mathematical expression of the maximum photodiode size in the presence of constraints imposed by its bias voltage and the receiver bandwidth. A numerical example using real-world TOTL system parameters is given to demonstrate the design methodology. The trade off between transmission efficiency, noise and inter-symbol interference (ISI) in terms of the 3-dB bandwidth of the receiver is investigated. To this end, receivers with bandwidth about 4/3, 3/3, 2/3 and 1/3 of the data rate are compared with respect to the sensitivity. It was found that the receiver bandwidth of 2/3 of the data rate achieves the highest sensitivity for thin tissue (2 mm) and that a receiver bandwidth of 1/3 of the data rate is preferable for thicker tissues (5 and 8 mm).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经皮遥测链路中光学接收器的设计优化
本文提出了一种优化神经记录系统光接收机的设计方法。在经皮光学遥测链路(TOTL)系统中,光/组织相互作用产生传输光子的显著散射。因此,为了提高传输效率,原则上使用尺寸更大的光电二极管来收集更多的散射光子是有利的。然而,光电二极管的尺寸受到带宽要求的限制。在本文中,我们推导了在其偏置电压和接收器带宽约束下光电二极管最大尺寸的数学表达式。以实际total系统参数为例,说明了设计方法。研究了传输效率、噪声和码间干扰(ISI)在接收机3db带宽方面的权衡。为此,对带宽约为数据速率的4/ 3,3 / 3,2 /3和1/3的接收机进行灵敏度比较。研究发现,对于薄组织(2mm),接收带宽为数据速率的2/3可获得最高灵敏度,而对于厚组织(5和8mm),接收带宽为数据速率的1/3更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1