Rosenblatt perceptrons for handwritten digit recognition

Kussul Emst
{"title":"Rosenblatt perceptrons for handwritten digit recognition","authors":"Kussul Emst","doi":"10.1109/IJCNN.2001.939589","DOIUrl":null,"url":null,"abstract":"The Rosenblatt perceptron was used for handwritten digit recognition. For testing its performance the MNIST database was used. 60,000 samples of handwritten digits were used for perceptron training, and 10,000 samples for testing. A recognition rate of 99.2% was obtained. The critical parameter of Rosenblatt perceptrons is the number of neurons N in the associative neuron layer. We changed the parameter N from 1,000 to 512,000. We investigated the influence of this parameter on the performance of the Rosenblatt perceptron. Increasing N from 1,000 to 512,000 involves decreasing of test errors from 5 to 8 times. It was shown that a large scale Rosenblatt perceptron is comparable with the best classifiers checked on MNIST database (98.9%-99.3%).","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The Rosenblatt perceptron was used for handwritten digit recognition. For testing its performance the MNIST database was used. 60,000 samples of handwritten digits were used for perceptron training, and 10,000 samples for testing. A recognition rate of 99.2% was obtained. The critical parameter of Rosenblatt perceptrons is the number of neurons N in the associative neuron layer. We changed the parameter N from 1,000 to 512,000. We investigated the influence of this parameter on the performance of the Rosenblatt perceptron. Increasing N from 1,000 to 512,000 involves decreasing of test errors from 5 to 8 times. It was shown that a large scale Rosenblatt perceptron is comparable with the best classifiers checked on MNIST database (98.9%-99.3%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于手写数字识别的Rosenblatt感知器
Rosenblatt感知器用于手写数字识别。为了测试其性能,使用了MNIST数据库。感知器训练使用60,000个手写数字样本,测试使用10,000个样本。识别率为99.2%。Rosenblatt感知器的关键参数是联想神经元层的神经元数量N。我们把参数N从1000改成了512000。我们研究了这个参数对Rosenblatt感知器性能的影响。将N从1,000增加到512,000涉及将测试误差从5倍减少到8倍。结果表明,大规模Rosenblatt感知器与MNIST数据库上的最佳分类器(98.9%-99.3%)相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1