{"title":"Using cap-integral standoffs to reduce chip hot-spot temperatures in electronic packages","authors":"M. June, K. Sikka","doi":"10.1109/ITHERM.2002.1012454","DOIUrl":null,"url":null,"abstract":"For high-power electronic packages, chip hot-spots and cross-chip temperature gradients represent a significant portion of the total thermal resistance from chip to ambient. This paper presents a technique of reducing the chip hot-spot temperatures using cap integral standoffs. The thermal benefit of the standoffs is shown experimentally and validated using thermal modeling. Thermal modeling is then extended to non-uniform power dissipation chips. Results show that the chip hot-spot temperature can be reduced by 5-10 /spl deg/C in a 100 W electronic package.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
For high-power electronic packages, chip hot-spots and cross-chip temperature gradients represent a significant portion of the total thermal resistance from chip to ambient. This paper presents a technique of reducing the chip hot-spot temperatures using cap integral standoffs. The thermal benefit of the standoffs is shown experimentally and validated using thermal modeling. Thermal modeling is then extended to non-uniform power dissipation chips. Results show that the chip hot-spot temperature can be reduced by 5-10 /spl deg/C in a 100 W electronic package.