Classification of brain tumour 1H MR spectra: Extracting features by metabolite quantification or nonlinear manifold learning?

Guang Yang, F. Raschke, T. Barrick, F. Howe
{"title":"Classification of brain tumour 1H MR spectra: Extracting features by metabolite quantification or nonlinear manifold learning?","authors":"Guang Yang, F. Raschke, T. Barrick, F. Howe","doi":"10.1109/ISBI.2014.6868051","DOIUrl":null,"url":null,"abstract":"Proton magnetic resonance spectroscopy (1H MRS) provides non-invasive information on brain tumour biochemistry. Many studies have shown that 1H MRS can be used in an objective decision support system, which gives additional diagnosis and prognostic information to the data obtained using conventional radiological modalities. Fully automatic analyses of 1H MRS have been previously applied and can be separated into two types: (i) model dependent signal quantification followed by pattern recognition (PR), or (ii) model independent PR methods. However, there is not yet a consensus as to the best techniques of MRS post-processing or feature extraction to be used for optimum classification. In this study, we analysed the single-voxel MRS acquisitions of 74 patients with histologically diagnosed brain tumours. Our classification results show that the model independent nonlinear manifold learning method can produce superior results to those of using model dependent metabolite quantification.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Proton magnetic resonance spectroscopy (1H MRS) provides non-invasive information on brain tumour biochemistry. Many studies have shown that 1H MRS can be used in an objective decision support system, which gives additional diagnosis and prognostic information to the data obtained using conventional radiological modalities. Fully automatic analyses of 1H MRS have been previously applied and can be separated into two types: (i) model dependent signal quantification followed by pattern recognition (PR), or (ii) model independent PR methods. However, there is not yet a consensus as to the best techniques of MRS post-processing or feature extraction to be used for optimum classification. In this study, we analysed the single-voxel MRS acquisitions of 74 patients with histologically diagnosed brain tumours. Our classification results show that the model independent nonlinear manifold learning method can produce superior results to those of using model dependent metabolite quantification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑肿瘤1H磁共振光谱的分类:通过代谢物量化或非线性流形学习提取特征?
质子磁共振波谱(1H MRS)提供脑肿瘤生物化学的非侵入性信息。许多研究表明,1H MRS可用于客观决策支持系统,为使用传统放射方式获得的数据提供额外的诊断和预后信息。全自动分析1H MRS之前已经应用,可分为两种类型:(i)依赖于模型的信号量化,然后是模式识别(PR),或(ii)独立于模型的PR方法。然而,目前还没有一个共识的最佳技术的磁共振后处理或特征提取用于最佳分类。在这项研究中,我们分析了74例组织学诊断为脑肿瘤的患者的单体素MRS采集。我们的分类结果表明,与模型无关的非线性流形学习方法比使用模型依赖的代谢物量化方法具有更好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1