Evolutionary computation with extinction: experiments and analysis

G. Fogel, G. Greenwood, K. Chellapilla
{"title":"Evolutionary computation with extinction: experiments and analysis","authors":"G. Fogel, G. Greenwood, K. Chellapilla","doi":"10.1109/CEC.2000.870818","DOIUrl":null,"url":null,"abstract":"Under a species-level abstraction of classical evolutionary programming, the standard tournament selection model is not appropriate. When viewed in this manner, it is more appropriate to consider two modes of life histories: background evolution and extinction. The utility of this approach as an optimization procedure is evaluated on a series of test functions relative to the performance of classical evolutionary programming and fast evolutionary programming. The results indicate that on some smooth, convex landscapes and over noisy, highly multimodal landscapes, extinction evolutionary programming can outperform classical and fast evolutionary programming. On other landscapes, however, extinction evolutionary programming performs considerably worse than classical and fast evolutionary programming. Potential reasons for this variability in performance are indicated.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"350 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Under a species-level abstraction of classical evolutionary programming, the standard tournament selection model is not appropriate. When viewed in this manner, it is more appropriate to consider two modes of life histories: background evolution and extinction. The utility of this approach as an optimization procedure is evaluated on a series of test functions relative to the performance of classical evolutionary programming and fast evolutionary programming. The results indicate that on some smooth, convex landscapes and over noisy, highly multimodal landscapes, extinction evolutionary programming can outperform classical and fast evolutionary programming. On other landscapes, however, extinction evolutionary programming performs considerably worse than classical and fast evolutionary programming. Potential reasons for this variability in performance are indicated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有灭绝的进化计算:实验与分析
在经典进化规划的物种层次抽象下,标准的竞赛选择模型是不合适的。从这个角度来看,考虑两种生命史模式更合适:背景进化和灭绝。通过一系列与经典进化规划和快速进化规划性能相关的测试函数,对该方法作为优化过程的效用进行了评估。结果表明,在一些光滑、凹凸的景观和过度噪声、高度多模态的景观上,灭绝进化规划优于经典进化规划和快速进化规划。然而,在其他景观中,灭绝进化规划的表现要比经典和快速进化规划差得多。指出了造成这种性能差异的潜在原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1