Sequential Pattern Learning via Kernel Alignment

Miao Cheng, Weibin Yang, Yonggang Li, Shichao Zhang, A. Tsoi, Yuanyan Tang
{"title":"Sequential Pattern Learning via Kernel Alignment","authors":"Miao Cheng, Weibin Yang, Yonggang Li, Shichao Zhang, A. Tsoi, Yuanyan Tang","doi":"10.1109/ICACI.2019.8778473","DOIUrl":null,"url":null,"abstract":"As a branch of data analysis, pattern alignment has received much attentions in recent years. More specifically, it learns to find intrinsic bridge between different domains and make data handling be transferrable for efficient recognition. In this work, an unsupervised feature learning method is proposed to meet demand on pattern alignment. Compared with existing methods, more efficiency can be reached owing to scalable learning, which is competent to tackle large-scale data for kernel alignment. Experimental results show proposed method can give comparable performance among the state-of-the-art methods.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As a branch of data analysis, pattern alignment has received much attentions in recent years. More specifically, it learns to find intrinsic bridge between different domains and make data handling be transferrable for efficient recognition. In this work, an unsupervised feature learning method is proposed to meet demand on pattern alignment. Compared with existing methods, more efficiency can be reached owing to scalable learning, which is competent to tackle large-scale data for kernel alignment. Experimental results show proposed method can give comparable performance among the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核对齐的顺序模式学习
模式对齐作为数据分析的一个分支,近年来受到了广泛的关注。更具体地说,它学习寻找不同领域之间的内在桥梁,并使数据处理具有可转移性,以实现有效的识别。本文提出了一种无监督特征学习方法来满足模式对齐的需求。与现有的方法相比,可扩展的学习可以提高效率,能够处理大规模数据进行核对齐。实验结果表明,该方法具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis Stage Actor Tracking Method Based on Kalman Filter Parameter Identification, Verification and Simulation of the CSD Transport Process A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction A Deep Residual Networks Accelerator on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1