h-Fair: Asymptotic Scheduling of Heavy Workloads in Heterogeneous Data Centers

A. Postoaca, Florin Pop, R. Prodan
{"title":"h-Fair: Asymptotic Scheduling of Heavy Workloads in Heterogeneous Data Centers","authors":"A. Postoaca, Florin Pop, R. Prodan","doi":"10.1109/CCGRID.2018.00058","DOIUrl":null,"url":null,"abstract":"Large scale computing solutions are increasingly used in the context of Big Data platforms, where efficient scheduling algorithms play an important role in providing optimized cluster resource utilization, throughput and fairness. This paper deals with the problem of scheduling a set of jobs across a cluster of machines handling the specific use case of fair scheduling for jobs and machines with heterogeneous characteristics. Although job and cluster diversity is unprecedented, most schedulers do not provide implementations that handle multiple resource type fairness in a heterogeneous system. We propose in this paper a new scheduler called h-Fair that selects jobs for scheduling based on a global dominant resource fairness heterogeneous policy, and dispatches them on machines with similar characteristics to the resource demands using the cosine similarity. We implemented h-Fair in Apache Hadoop YARN and we compare it with the existing Fair Scheduler that uses the dominant resource fairness policy based on the Google workload trace. We show that our implementation provides better cluster resource utilization and allocates more containers when jobs and machines have heterogeneous characteristics.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large scale computing solutions are increasingly used in the context of Big Data platforms, where efficient scheduling algorithms play an important role in providing optimized cluster resource utilization, throughput and fairness. This paper deals with the problem of scheduling a set of jobs across a cluster of machines handling the specific use case of fair scheduling for jobs and machines with heterogeneous characteristics. Although job and cluster diversity is unprecedented, most schedulers do not provide implementations that handle multiple resource type fairness in a heterogeneous system. We propose in this paper a new scheduler called h-Fair that selects jobs for scheduling based on a global dominant resource fairness heterogeneous policy, and dispatches them on machines with similar characteristics to the resource demands using the cosine similarity. We implemented h-Fair in Apache Hadoop YARN and we compare it with the existing Fair Scheduler that uses the dominant resource fairness policy based on the Google workload trace. We show that our implementation provides better cluster resource utilization and allocates more containers when jobs and machines have heterogeneous characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
h-Fair:异构数据中心大负载的渐近调度
大规模计算解决方案越来越多地应用于大数据平台,高效的调度算法在优化集群资源利用率、吞吐量和公平性方面发挥着重要作用。本文研究了跨机器集群调度一组作业的问题,处理了对具有异构特征的作业和机器进行公平调度的具体用例。尽管作业和集群的多样性是前所未有的,但大多数调度器没有提供在异构系统中处理多种资源类型公平性的实现。本文提出了一种新的调度程序h-Fair,它基于全局优势资源公平异构策略选择调度任务,并利用余弦相似度将任务分配到与资源需求特征相似的机器上。我们在Apache Hadoop YARN中实现了h-Fair,并将其与现有的Fair Scheduler进行了比较,后者使用基于Google工作负载跟踪的主导资源公平策略。我们展示了我们的实现提供了更好的集群资源利用率,并在作业和机器具有异构特征时分配了更多的容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1