{"title":"Ethanol gas sensor with nanotree arrays by hydrothermal method and wet etching","authors":"Feng-Renn Juang, C. Hsaio","doi":"10.23919/SNW.2017.8242326","DOIUrl":null,"url":null,"abstract":"Highly sensitive nanotree arrays are developed on silicon by combining wet etching and hydrothermal method. Due to the large surface-to-volume ratio, the device has relative sensitivity ratio of −82% to 100ppm ethanol gas under 150°C. The response and recovery times are also shortened significantly.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Highly sensitive nanotree arrays are developed on silicon by combining wet etching and hydrothermal method. Due to the large surface-to-volume ratio, the device has relative sensitivity ratio of −82% to 100ppm ethanol gas under 150°C. The response and recovery times are also shortened significantly.