Restricted Boltzmann Machine for Nonlinear System Modeling

E. D. L. Rosa, Wen Yu
{"title":"Restricted Boltzmann Machine for Nonlinear System Modeling","authors":"E. D. L. Rosa, Wen Yu","doi":"10.1109/ICMLA.2015.24","DOIUrl":null,"url":null,"abstract":"In this paper, we use a deep learning method, restricted Boltzmann machine, for nonlinear system identification. The neural model has deep architecture and is generated by a random search method. The initial weights of this deep neural model are obtained from the restricted Boltzmann machines. To identify nonlinear systems, we propose special unsupervised learning methods with input data. The normal supervised learning is used to train the weights with the output data. The modified algorithm is validated by modeling two benchmark systems.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we use a deep learning method, restricted Boltzmann machine, for nonlinear system identification. The neural model has deep architecture and is generated by a random search method. The initial weights of this deep neural model are obtained from the restricted Boltzmann machines. To identify nonlinear systems, we propose special unsupervised learning methods with input data. The normal supervised learning is used to train the weights with the output data. The modified algorithm is validated by modeling two benchmark systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统建模的受限玻尔兹曼机
在本文中,我们使用一种深度学习方法——受限玻尔兹曼机来进行非线性系统辨识。该神经模型具有深层结构,采用随机搜索方法生成。该深度神经模型的初始权值由受限玻尔兹曼机获得。为了识别非线性系统,我们提出了带有输入数据的特殊无监督学习方法。使用正常监督学习对输出数据进行权值训练。通过对两个基准系统的建模验证了改进算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1