Five-Level Standalone Neutral Point Clamped Rectifier with Time Division Multiplexing-based Voltage Balancing Control and Active PFC

Eli Barbie, D. Baimel, A. Kuperman
{"title":"Five-Level Standalone Neutral Point Clamped Rectifier with Time Division Multiplexing-based Voltage Balancing Control and Active PFC","authors":"Eli Barbie, D. Baimel, A. Kuperman","doi":"10.1109/CPE-POWERENG58103.2023.10227399","DOIUrl":null,"url":null,"abstract":"The biggest drawback of Neutral Point Clamped (NPC) converters lies in their inability to maintain voltage balance in the dc-link capacitors for some operating conditions when the number of voltage levels (N) exceeds beyond three. To overcome this limitation, NPC inverters are usually combined with active dc-link voltage generation by utilizing multi-winding transformers and controlled rectifiers, or by using a second NPC converter as an active frontend, thus resulting in a complex system. Moreover, previously proposed Multilevel Rectifier (MLR) solutions have relied on additional auxiliary circuitry for handling the dc-link voltage balancing. In this article, a Five-level NPC-based rectifier with a Time Division Multiplexing-based voltage balancing control is revealed and verified by digital simulations and controller plus hardware in loop real-time simulations. The proposed PWM-based control scheme allows the NPC to be operated as either a standalone MLR with an unbalanced resistive load or as an active frontend to drive a second NPC-based inverter, in which dc-link voltage balancing is carried out only from the rectifier side, while also maintaining the ability to control the power factor and the amount of reactive power exchanged with the ac grid.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The biggest drawback of Neutral Point Clamped (NPC) converters lies in their inability to maintain voltage balance in the dc-link capacitors for some operating conditions when the number of voltage levels (N) exceeds beyond three. To overcome this limitation, NPC inverters are usually combined with active dc-link voltage generation by utilizing multi-winding transformers and controlled rectifiers, or by using a second NPC converter as an active frontend, thus resulting in a complex system. Moreover, previously proposed Multilevel Rectifier (MLR) solutions have relied on additional auxiliary circuitry for handling the dc-link voltage balancing. In this article, a Five-level NPC-based rectifier with a Time Division Multiplexing-based voltage balancing control is revealed and verified by digital simulations and controller plus hardware in loop real-time simulations. The proposed PWM-based control scheme allows the NPC to be operated as either a standalone MLR with an unbalanced resistive load or as an active frontend to drive a second NPC-based inverter, in which dc-link voltage balancing is carried out only from the rectifier side, while also maintaining the ability to control the power factor and the amount of reactive power exchanged with the ac grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
五电平独立中性点箝位整流器与时分多路复用基于电压平衡控制和有源PFC
中性点箝位(NPC)变换器的最大缺点在于,当电压电平(N)超过3个时,在某些工作条件下,它们无法保持直流链路电容器中的电压平衡。为了克服这一限制,NPC逆变器通常通过利用多绕组变压器和可控整流器与有源直流电压产生相结合,或者通过使用第二个NPC转换器作为有源前端,从而形成一个复杂的系统。此外,以前提出的多电平整流器(MLR)解决方案依赖于额外的辅助电路来处理直流链路电压平衡。本文介绍了一种基于五电平npc的整流器,并通过数字仿真和控制器加硬件在环实时仿真进行了验证。所提出的基于pwm的控制方案允许NPC作为具有不平衡电阻负载的独立MLR或作为驱动第二个基于NPC的逆变器的有源前端运行,其中直流链路电压平衡仅从整流器侧进行,同时保持控制功率因数和与交流电网交换的无功功率量的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AC Loss Analysis Approaches for Hairpin Winding Configuration: Analytical, Hybrid Model, and FEA Comparison of Decoupling Control Strategies for Multiple Active Bridge DC-DC Converter Risk-averse Estimation of Electric Heat Pump Power Consumption Triple-Loop Control Configuration for Grid-Connected LCL-Filtered Inverters Based on Time-Domain Design Power Quality Management in Microgrids for Mission Critical NZEBs: A Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1