HELPSE: Homomorphic Encryption-based Lightweight Password Strength Estimation in a Virtual Keyboard System

Michael Cho, Keewoo Lee, Sunwoong Kim
{"title":"HELPSE: Homomorphic Encryption-based Lightweight Password Strength Estimation in a Virtual Keyboard System","authors":"Michael Cho, Keewoo Lee, Sunwoong Kim","doi":"10.1145/3526241.3530338","DOIUrl":null,"url":null,"abstract":"Recently, cyber-physical systems are actively using cloud servers to overcome the limitations of power and processing speed of edge devices. When passwords generated on a client device are evaluated on a server, the information is exposed not only on networks but also on the server-side. To solve this problem, we move the previous lightweight password strength estimation (LPSE) algorithm to a homomorphic encryption (HE) domain. Our proposed method adopts numerical methods to perform the operations of the LPSE algorithm, which is not provided in HE schemes. In addition, the LPSE algorithm is modified to increase the number of iterations of the numerical methods given depth constraints. Our proposed HE-based LPSE (HELPSE) method is implemented as a client-server model. As a client-side, a virtual keyboard system is implemented on an embedded development board with a camera sensor. A password is obtained from this system, encrypted, and sent over a network to a resource-rich server-side. The proposed HELPSE method is performed on the server. Using depths of about 20, our proposed method shows average error rates of less than 1% compared to the original LPSE algorithm. For a polynomial degree of 32K, the execution time on the server-side is about 5 seconds.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, cyber-physical systems are actively using cloud servers to overcome the limitations of power and processing speed of edge devices. When passwords generated on a client device are evaluated on a server, the information is exposed not only on networks but also on the server-side. To solve this problem, we move the previous lightweight password strength estimation (LPSE) algorithm to a homomorphic encryption (HE) domain. Our proposed method adopts numerical methods to perform the operations of the LPSE algorithm, which is not provided in HE schemes. In addition, the LPSE algorithm is modified to increase the number of iterations of the numerical methods given depth constraints. Our proposed HE-based LPSE (HELPSE) method is implemented as a client-server model. As a client-side, a virtual keyboard system is implemented on an embedded development board with a camera sensor. A password is obtained from this system, encrypted, and sent over a network to a resource-rich server-side. The proposed HELPSE method is performed on the server. Using depths of about 20, our proposed method shows average error rates of less than 1% compared to the original LPSE algorithm. For a polynomial degree of 32K, the execution time on the server-side is about 5 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟键盘系统中基于同态加密的轻量级密码强度估计
近年来,网络物理系统积极使用云服务器来克服边缘设备的功率和处理速度的限制。当在客户端设备上生成的密码在服务器上进行评估时,信息不仅会暴露在网络上,还会暴露在服务器端。为了解决这个问题,我们将以前的轻量级密码强度估计(LPSE)算法转移到同态加密(HE)域。我们提出的方法采用数值方法来执行LPSE算法的运算,这是HE方案所不提供的。此外,在给定深度约束的情况下,对LPSE算法进行了改进,增加了数值方法的迭代次数。我们提出的基于he的LPSE (HELPSE)方法是作为客户机-服务器模型实现的。作为客户端,虚拟键盘系统在带有摄像头传感器的嵌入式开发板上实现。从该系统获取密码,进行加密,并通过网络发送到资源丰富的服务器端。建议的HELPSE方法在服务器上执行。在深度约为20的情况下,与原始LPSE算法相比,我们提出的方法的平均错误率小于1%。对于多项式度为32K的情况,服务器端的执行时间大约为5秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Power Consumption using Approximate Encoding for CNN Accelerators at the Edge Design and Evaluation of In-Exact Compressor based Approximate Multipliers MOCCA: A Process Variation Tolerant Systolic DNN Accelerator using CNFETs in Monolithic 3D ENTANGLE: An Enhanced Logic-locking Technique for Thwarting SAT and Structural Attacks Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1