VLSI implementation of an associative content addressable memory based on Hopfield network model

L. Ionescu, A. Mazare, G. Serban
{"title":"VLSI implementation of an associative content addressable memory based on Hopfield network model","authors":"L. Ionescu, A. Mazare, G. Serban","doi":"10.1109/SMICND.2010.5650469","DOIUrl":null,"url":null,"abstract":"The content addressable memory (CAM) is allowed to search a data word without knowing where its address is. In addition, it is permissible to associate the content of the location or neighboring locations where the data word was identified. This paper presents our own approach for VLSI hardware implementation of the CAM memory. The proposed solution uses a Hopfield neural network model and is characterized by simplicity and the possibility of using the same hardware structures for saving may data patterns. Will be presented design methods and implementation to VLSI circuit structures, the performance of our solution and experimental results.","PeriodicalId":377326,"journal":{"name":"CAS 2010 Proceedings (International Semiconductor Conference)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAS 2010 Proceedings (International Semiconductor Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2010.5650469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The content addressable memory (CAM) is allowed to search a data word without knowing where its address is. In addition, it is permissible to associate the content of the location or neighboring locations where the data word was identified. This paper presents our own approach for VLSI hardware implementation of the CAM memory. The proposed solution uses a Hopfield neural network model and is characterized by simplicity and the possibility of using the same hardware structures for saving may data patterns. Will be presented design methods and implementation to VLSI circuit structures, the performance of our solution and experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hopfield网络模型的关联内容可寻址存储器的VLSI实现
允许内容可寻址存储器(CAM)在不知道其地址的情况下搜索数据字。此外,还允许将标识数据字的位置或邻近位置的内容关联起来。本文提出了我们自己的CAM存储器的VLSI硬件实现方法。提出的解决方案使用Hopfield神经网络模型,其特点是简单,并且可以使用相同的硬件结构来保存多个数据模式。将介绍VLSI电路结构的设计方法和实现方法,以及我们的性能解决方案和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum capacitance of bilayer graphene A short route of micrometric magnetite synthesis via Fe-EDTA thermal decomposition Selection of gas sensing materials using the Hard Soft Acid Base theory; application to Surface Acoustic Wave CO2 detection Design of quasi-vertical GaN high power Schottky diodes based on field plate termination Carbon nanotube electrodes for electrochemiluminescence biosensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1