Evaluation of artificial neural networks for indoor positioning using Bluetooth Beacons

Leonardo Vanzin, Adriana Postal, Luiz Antonio Rodrigues, M. Oyamada
{"title":"Evaluation of artificial neural networks for indoor positioning using Bluetooth Beacons","authors":"Leonardo Vanzin, Adriana Postal, Luiz Antonio Rodrigues, M. Oyamada","doi":"10.5753/sbesc_estendido.2022.228119","DOIUrl":null,"url":null,"abstract":"Indoor positioning opens up opportunities for a wide range of applications, including active marketing, accessibility and security. Although GPS (Global Positioning System) is widely used for outdoor location, it is inaccurate and in some cases unavailable indoors. One of the solutions is to use Bluetooth Beacons to determine the distance between the device and the beacon indoors using the Received Signal Strength Indicator (RSSI). The location of the object in the environment can be determined using at least three beacons and methods such as trilateration. This work aims to evaluate the use of artificial neural networks (ANN) to determine the distance and location of the laptop in an indoor environment. A first experiment compares the Log Distance Path Loss (LDPL) model and the ANN to determine the distance between the beacon and a laptop. A second experiment compares which method is best to determine the position of the laptop in a room. The following methods were evaluated: a) trilateration with distance calculation using the LDPL method; b) trilateration with distance calculation using an ANN; and c) position determination using an ANN. The results show that RSSI values can vary due to obstacles and the position of the antenna between the beacon and the laptop.","PeriodicalId":305719,"journal":{"name":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbesc_estendido.2022.228119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor positioning opens up opportunities for a wide range of applications, including active marketing, accessibility and security. Although GPS (Global Positioning System) is widely used for outdoor location, it is inaccurate and in some cases unavailable indoors. One of the solutions is to use Bluetooth Beacons to determine the distance between the device and the beacon indoors using the Received Signal Strength Indicator (RSSI). The location of the object in the environment can be determined using at least three beacons and methods such as trilateration. This work aims to evaluate the use of artificial neural networks (ANN) to determine the distance and location of the laptop in an indoor environment. A first experiment compares the Log Distance Path Loss (LDPL) model and the ANN to determine the distance between the beacon and a laptop. A second experiment compares which method is best to determine the position of the laptop in a room. The following methods were evaluated: a) trilateration with distance calculation using the LDPL method; b) trilateration with distance calculation using an ANN; and c) position determination using an ANN. The results show that RSSI values can vary due to obstacles and the position of the antenna between the beacon and the laptop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蓝牙信标进行室内定位的人工神经网络评价
室内定位为广泛的应用开辟了机会,包括积极的营销,可访问性和安全性。虽然GPS(全球定位系统)被广泛用于室外定位,但它是不准确的,在某些情况下无法在室内使用。其中一个解决方案是使用蓝牙信标,通过接收信号强度指示器(RSSI)来确定设备与室内信标之间的距离。物体在环境中的位置可以使用至少三个信标和诸如三边测量的方法来确定。这项工作旨在评估人工神经网络(ANN)的使用,以确定笔记本电脑在室内环境中的距离和位置。第一个实验比较了日志距离路径损失(LDPL)模型和人工神经网络来确定信标和笔记本电脑之间的距离。第二个实验比较了确定笔记本电脑在房间中的位置的最佳方法。评估了以下方法:a)利用LDPL法计算距离的三边测量;b)使用人工神经网络计算距离的三边测量;c)使用人工神经网络确定位置。结果表明,RSSI值会因障碍物和信标与笔记本电脑之间天线的位置而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metodologia Automatizada para Descrever a Cobertura de Sinal Móvel em Rodovias: Estudo de Caso Considerando Incerteza de Dados Um Estudo de Desempenho do HWMP em Ambientes de Cidades Inteligentes Desenvolvendo Simulações de Uso de Drones em Cidades Inteligentes Evaluation of low-cost sensors for real-time water quality monitoring Avaliando Estratégias de Comunicação em Redes de Área Corporal sem Fio sob Diferentes Contextos de Mobilidade, Interferência e Carga de Aplicação
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1