Real-time object classification for autonomous vehicle using LIDAR

Masaru Yoshioka, N. Suganuma, Keisuke Yoneda, Mohammad Aldibaja
{"title":"Real-time object classification for autonomous vehicle using LIDAR","authors":"Masaru Yoshioka, N. Suganuma, Keisuke Yoneda, Mohammad Aldibaja","doi":"10.1109/ICIIBMS.2017.8279696","DOIUrl":null,"url":null,"abstract":"Object classification is an important issue in order to bring autonomous vehicle into reality. In this paper, real-time and robust classification based on Real AdaBoost algorithm is researched and improved. Various effective features of road objects are computed using LIDAR 3D point clouds. The improved classifier provides an accuracy of over 90 (%) in a range of 50 (m) and classifies objects into car, pedestrian, bicyclist and background. Moreover, processing time of classifying an object consumes only 0.07∗10−3 (sec) that enables this method to be used for autonomous driving on urban roads.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Object classification is an important issue in order to bring autonomous vehicle into reality. In this paper, real-time and robust classification based on Real AdaBoost algorithm is researched and improved. Various effective features of road objects are computed using LIDAR 3D point clouds. The improved classifier provides an accuracy of over 90 (%) in a range of 50 (m) and classifies objects into car, pedestrian, bicyclist and background. Moreover, processing time of classifying an object consumes only 0.07∗10−3 (sec) that enables this method to be used for autonomous driving on urban roads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光雷达的自动驾驶车辆实时目标分类
目标分类是实现自动驾驶汽车的一个重要问题。本文研究并改进了基于Real AdaBoost算法的实时鲁棒分类。利用激光雷达三维点云计算道路物体的各种有效特征。改进后的分类器在50米范围内提供了超过90%的准确率,并将物体分为汽车、行人、自行车和背景。此外,分类对象的处理时间仅为0.07∗10−3 (sec),使该方法能够用于城市道路上的自动驾驶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of accuracy of knife tip position estimation in liver surgery support system From usability to user experience Optimal window lengths, features and subsets thereof for freezing of gait classification FF OCT with a swept source integrating a SLD and an AOTF 2-P imaging of mouse visual cortex layer 6 corticothalamic feedback during different behavior states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1