M. S. Khan, M. F. Shafique, A. Capobianco, E. Autizi, I. Shoaib
{"title":"Compact UWB-MIMO antenna array with a novel decoupling structure","authors":"M. S. Khan, M. F. Shafique, A. Capobianco, E. Autizi, I. Shoaib","doi":"10.1109/IBCAST.2013.6512176","DOIUrl":null,"url":null,"abstract":"In this paper, a compact planar Ultra-Wideband (UWB) Multiple-input Multiple-output (MIMO) antenna array is proposed. This UWB-MIMO antenna array consists of two identical monopole antenna elements with a novel decoupling structure etched on the ground plane. The antenna performs very well over the UWB frequency range of 3.1-10.6 GHz. The decoupling structure improves the isolation between the antennas over the complete frequency band which can only be achieved otherwise by increasing the separation between the antenna elements. The analysis of antenna performance with and without stub is provided to demonstrate the significance of adding the decoupling stub to the design. The proposed compact and cost efficient antenna array system measures 27 × 47 mm2 only.","PeriodicalId":276834,"journal":{"name":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2013.6512176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
In this paper, a compact planar Ultra-Wideband (UWB) Multiple-input Multiple-output (MIMO) antenna array is proposed. This UWB-MIMO antenna array consists of two identical monopole antenna elements with a novel decoupling structure etched on the ground plane. The antenna performs very well over the UWB frequency range of 3.1-10.6 GHz. The decoupling structure improves the isolation between the antennas over the complete frequency band which can only be achieved otherwise by increasing the separation between the antenna elements. The analysis of antenna performance with and without stub is provided to demonstrate the significance of adding the decoupling stub to the design. The proposed compact and cost efficient antenna array system measures 27 × 47 mm2 only.