Detecting sensorimotor rhythms from the EEG signals using the independent component analysis and the coefficient of determination

Roxana Aldea, O. Eva
{"title":"Detecting sensorimotor rhythms from the EEG signals using the independent component analysis and the coefficient of determination","authors":"Roxana Aldea, O. Eva","doi":"10.1109/ISSCS.2013.6651213","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for highlighting the characteristics of sensorimotor rhythms (mu and beta). The electroencephalographic (EEG) data were recorded with 8 g.tec active electrodes by means of g.MOBIlab+ module. The EEG signals were filtered with a fifth order Butterworth band-pass filter between 0 and 30Hz and then the independent component analysis (ICA) was applied. The coefficient of determination (r2) has been computed for both situations, comparing the EEG spectra associated with each motor-imagery task with the spectra recorded in resting conditions. ICA and the coefficient of determination help us to demonstrate that the recorded data can be used to implement a brain computer interface (BCI) based on motor imagery tasks. Imagining left hand movement produces a desynchronization on CP4 and C4 electrodes in the right side of the scalp, while imagining right hand movement produces a desynchronization on CP3, C3 and P3 electrodes, on the left side of the brain.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a method for highlighting the characteristics of sensorimotor rhythms (mu and beta). The electroencephalographic (EEG) data were recorded with 8 g.tec active electrodes by means of g.MOBIlab+ module. The EEG signals were filtered with a fifth order Butterworth band-pass filter between 0 and 30Hz and then the independent component analysis (ICA) was applied. The coefficient of determination (r2) has been computed for both situations, comparing the EEG spectra associated with each motor-imagery task with the spectra recorded in resting conditions. ICA and the coefficient of determination help us to demonstrate that the recorded data can be used to implement a brain computer interface (BCI) based on motor imagery tasks. Imagining left hand movement produces a desynchronization on CP4 and C4 electrodes in the right side of the scalp, while imagining right hand movement produces a desynchronization on CP3, C3 and P3 electrodes, on the left side of the brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用独立分量分析和决定系数法从脑电图信号中检测感觉运动节律
本文提出了一种突出感觉运动节律(mu和beta)特征的方法。采用g.MOBIlab+模块,用8个g.tec活性电极记录脑电图数据。用5阶巴特沃斯带通滤波器在0 ~ 30Hz范围内对脑电信号进行滤波,然后进行独立分量分析(ICA)。计算了两种情况下的决定系数(r2),比较了与每个运动成像任务相关的脑电图频谱与静息条件下记录的频谱。ICA和决定系数帮助我们证明了记录的数据可以用于实现基于运动图像任务的脑机接口(BCI)。想象左手的运动在头皮右侧的CP4和C4电极上产生不同步,而想象右手的运动在大脑左侧的CP3、C3和P3电极上产生不同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1