{"title":"A Pruned-CELP Speech Codec Using Denoising Autoencoder with Spectral Compensation for Quality and Intelligibility Enhancement","authors":"Yu-Ting Lo, Syu-Siang Wang, Yu Tsao, Sheng-Yu Peng","doi":"10.1109/AICAS.2019.8771507","DOIUrl":null,"url":null,"abstract":"A codec based on the excited linear prediction (CELP) speech compression method adopting a denoising autoencoder with spectral compensation (DAE-SC) for quality and intelligibility enhancement is proposed in this paper. The sizes of CELP parameters in the encoder are carefully pruned to achieve a higher compression rate. To recover the speech quality and intelligibility degradation due to the pruned CELP parameters, a DAE-SC network with three hidden layers is employed in the decoder. Compared with the conventional CELP codec at a 9.6k bps transmission rate, the proposed speech codec achieves extra 21.9% bit rate reduction with comparable speech quality and intelligibility that are evaluated by four commonly used speech performance metrics.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A codec based on the excited linear prediction (CELP) speech compression method adopting a denoising autoencoder with spectral compensation (DAE-SC) for quality and intelligibility enhancement is proposed in this paper. The sizes of CELP parameters in the encoder are carefully pruned to achieve a higher compression rate. To recover the speech quality and intelligibility degradation due to the pruned CELP parameters, a DAE-SC network with three hidden layers is employed in the decoder. Compared with the conventional CELP codec at a 9.6k bps transmission rate, the proposed speech codec achieves extra 21.9% bit rate reduction with comparable speech quality and intelligibility that are evaluated by four commonly used speech performance metrics.