Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time

Vasilis Ethan Sarris, Panos K. Chrysanthis, Constantinos Costa
{"title":"Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time","authors":"Vasilis Ethan Sarris, Panos K. Chrysanthis, Constantinos Costa","doi":"10.1145/3609956.3609969","DOIUrl":null,"url":null,"abstract":"The exposure to viral airborne diseases is higher in crowded and congested spaces, the COVID-19 pandemic has revealed the need of pedestrian recommendation systems that can recommend less congested paths which minimize exposure to infectious crowd diseases in general. In this paper, we introduce ASTRO-C, an extension of previous work ASTRO, which optimizes for minimum congestion. To our knowledge, ASTRO-C is the only solution to this problem of constraint-satisfying, indoor-outdoor, congestion-based path finding. Our experimental evaluation using randomly generated Indoor-Outdoor graphs with varying constraints matching various real-world scenarios, show that ASTRO-C is able to recommend paths with, on average a 0.62X reduction in average congestion, while on average, total travel time increases by 1.06X and never exceeds 1.10X compared to ASTRO.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exposure to viral airborne diseases is higher in crowded and congested spaces, the COVID-19 pandemic has revealed the need of pedestrian recommendation systems that can recommend less congested paths which minimize exposure to infectious crowd diseases in general. In this paper, we introduce ASTRO-C, an extension of previous work ASTRO, which optimizes for minimum congestion. To our knowledge, ASTRO-C is the only solution to this problem of constraint-satisfying, indoor-outdoor, congestion-based path finding. Our experimental evaluation using randomly generated Indoor-Outdoor graphs with varying constraints matching various real-world scenarios, show that ASTRO-C is able to recommend paths with, on average a 0.62X reduction in average congestion, while on average, total travel time increases by 1.06X and never exceeds 1.10X compared to ASTRO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不忽略时间的前提下,推荐最不拥挤的室内外路径
在拥挤和拥挤的空间中,病毒性空气传播疾病的暴露率更高,COVID-19大流行表明需要行人推荐系统,该系统可以推荐不那么拥挤的路径,从而最大限度地减少对传染性人群疾病的暴露。在本文中,我们引入了ASTRO- c,它是对先前工作ASTRO的扩展,它以最小拥塞为目标进行优化。据我们所知,ASTRO-C是满足约束、室内-室外、基于拥塞的寻路问题的唯一解决方案。我们使用随机生成的具有不同约束条件的室内外图进行实验评估,结果表明,与ASTRO相比,ASTRO- c能够推荐平均拥堵减少0.62倍的路径,而平均总旅行时间增加1.06倍,且从未超过1.10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEAR: Dynamic Electric Ambulance Redeployment Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning Scalable Spatial Analytics and In Situ Query Processing in DaskDB Highway Systems: How Good are They, Really? Harmonization-guided deep residual network for imputing under clouds with multi-sensor satellite imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1