Bayesian approach with hierarchical Markov modeling for data fusion in image reconstruction applications

A. Mohammad-Djafari
{"title":"Bayesian approach with hierarchical Markov modeling for data fusion in image reconstruction applications","authors":"A. Mohammad-Djafari","doi":"10.1109/ICIF.2002.1021188","DOIUrl":null,"url":null,"abstract":"In many image reconstruction applications, more and more, we need techniques to combine different kind of data. This is the case, for example, in computed tomography (CT) medical imaging where one may use anatomic atlas data with X ray radiographic data or in non destructive testing (NDT) techniques where one wants to use both gamma rays and ultrasound echo-graphic data. In this paper, First we present the basics of Bayesian estimation approach and will see how the compound or hierarchical Markov modeling will give us the necessary tools for data fusion. Then, we present two examples: one in medical imaging CT application and the second in industrial NDT. In both cases, we consider an X ray CT image reconstruction problem using two different kind of data: classical X-rays radiographic data and some geometrical informations and propose new methods for these data fusion problems. The geometrical information we use are of two kind: partial knowledge of values in some regions and partial knowledge of the edges of some other regions. We show the advantages of using such informations on increasing the quality of reconstructions. We also show some results to analyze the effects of some errors in these data on the reconstruction results.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In many image reconstruction applications, more and more, we need techniques to combine different kind of data. This is the case, for example, in computed tomography (CT) medical imaging where one may use anatomic atlas data with X ray radiographic data or in non destructive testing (NDT) techniques where one wants to use both gamma rays and ultrasound echo-graphic data. In this paper, First we present the basics of Bayesian estimation approach and will see how the compound or hierarchical Markov modeling will give us the necessary tools for data fusion. Then, we present two examples: one in medical imaging CT application and the second in industrial NDT. In both cases, we consider an X ray CT image reconstruction problem using two different kind of data: classical X-rays radiographic data and some geometrical informations and propose new methods for these data fusion problems. The geometrical information we use are of two kind: partial knowledge of values in some regions and partial knowledge of the edges of some other regions. We show the advantages of using such informations on increasing the quality of reconstructions. We also show some results to analyze the effects of some errors in these data on the reconstruction results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次马尔可夫模型的贝叶斯图像重建数据融合方法
在许多图像重建应用中,我们越来越需要不同类型数据的组合技术。例如,在计算机断层扫描(CT)医学成像中,人们可以将解剖图谱数据与X射线射线照相数据结合使用,或者在无损检测(NDT)技术中,人们希望同时使用伽马射线和超声波超声成像数据。在本文中,我们首先介绍了贝叶斯估计方法的基础,并将看到复合或分层马尔可夫建模如何为数据融合提供必要的工具。然后,我们提出了两个例子:一个在医学成像CT应用,第二个在工业无损检测。在这两种情况下,我们考虑了X射线CT图像重建问题,使用两种不同类型的数据:经典X射线摄影数据和一些几何信息,并提出了这些数据融合问题的新方法。我们使用的几何信息有两种:部分区域值的部分知识和部分区域边的部分知识。我们展示了使用这些信息在提高重建质量方面的优势。我们还展示了一些结果来分析这些数据中的一些误差对重建结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1