Fermentative Hydrogen Production and Bacterial Community Analysis of Immobilized Sewage Sludge

V. S. Gnanambal, K. Swaminathan
{"title":"Fermentative Hydrogen Production and Bacterial Community Analysis of Immobilized Sewage Sludge","authors":"V. S. Gnanambal, K. Swaminathan","doi":"10.5958/0976-4763.2019.00003.5","DOIUrl":null,"url":null,"abstract":"A novel anaerobic batch fermentation seeded with immobilized sludge was developed for enhanced fermentative hydrogen production using pretreated sweet sorghum substrate as carbon source. Municipal sewage sludge was immobilized to produce hydrogen gas under anaerobic conditions. Cell immobilization was essentially achieved by gel entrapment approach. Hydrogen production was more efficient with the immobilized-cell system than with the free sludge. When the heat treated and acclimatized sludge's were immobilized, the cumulative hydrogen production enhanced. The batch fermentation was operated at a hydraulic retention time (HRT) of 24 h and an influent substrate concentration of 10–40 g/L. With highest concentration of substrate, the acclimatized sludge produced 15.98 mL of H2/g of substrate. In all the treatments, maximum hydrogen yield was obtained at the substrate concentration of 40 g/L, inoculum volume of 10 g/L, at room temperature and HRT of 24 h. The immobilized beads retained 60% of their activity up to three cycles. The best fermentative hydrogen production performance was eventually dominated by presumably enhanced hydrogen-producing bacterial species identified as Escherichia coli.","PeriodicalId":107641,"journal":{"name":"Journal of Biofuels","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biofuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5958/0976-4763.2019.00003.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel anaerobic batch fermentation seeded with immobilized sludge was developed for enhanced fermentative hydrogen production using pretreated sweet sorghum substrate as carbon source. Municipal sewage sludge was immobilized to produce hydrogen gas under anaerobic conditions. Cell immobilization was essentially achieved by gel entrapment approach. Hydrogen production was more efficient with the immobilized-cell system than with the free sludge. When the heat treated and acclimatized sludge's were immobilized, the cumulative hydrogen production enhanced. The batch fermentation was operated at a hydraulic retention time (HRT) of 24 h and an influent substrate concentration of 10–40 g/L. With highest concentration of substrate, the acclimatized sludge produced 15.98 mL of H2/g of substrate. In all the treatments, maximum hydrogen yield was obtained at the substrate concentration of 40 g/L, inoculum volume of 10 g/L, at room temperature and HRT of 24 h. The immobilized beads retained 60% of their activity up to three cycles. The best fermentative hydrogen production performance was eventually dominated by presumably enhanced hydrogen-producing bacterial species identified as Escherichia coli.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定化污泥发酵产氢及细菌群落分析
以经预处理的甜高粱基质为碳源,研究了以固定化污泥为种子的厌氧间歇发酵强化发酵产氢工艺。在厌氧条件下固定化城市污水污泥制氢。细胞固定基本上是通过凝胶包埋方法实现的。固定化池制氢效率高于游离污泥制氢效率。热处理污泥和驯化污泥固定化后,累积产氢量增加。间歇发酵的水力保留时间(HRT)为24 h,进水底物浓度为10-40 g/L。当底物浓度最高时,驯化后的污泥H2/g为15.98 mL。在所有处理中,当底物浓度为40 g/L,接种量为10 g/L,室温,HRT为24 h时,产氢量最大。三次循环后,固定化微球仍保持60%的活性。最佳的发酵产氢性能最终由可能增强的产氢细菌大肠杆菌主导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUATION OF CHLORELLA VULGARIS AS A SOURCE OF FERMENTABLE SUGAR USING AMYLASE PRODUCING BACILLUS CEREUS Bio-alcohol Generation from Agro-industrial Wastes: A Comprehensive Review Assessment of Fuel Qualities of Methyl Esters from Camelina sativa Seed Oil for Biofuel Applications Investigation of Fuel Properties of Water-in-Diesel Emulsion Conversion of Sugarcane Bagasse Cellulose and Hemicellulose into Sugars Using Electron Beam Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1