An Accelerated Prototype with Movidius Neural Compute Stick for Real-Time Object Detection

S. P. Kaarmukilan, Anakhi Hazarika, K. AmalThomas, Soumyajit Poddar, H. Rahaman
{"title":"An Accelerated Prototype with Movidius Neural Compute Stick for Real-Time Object Detection","authors":"S. P. Kaarmukilan, Anakhi Hazarika, K. AmalThomas, Soumyajit Poddar, H. Rahaman","doi":"10.1109/ISDCS49393.2020.9262996","DOIUrl":null,"url":null,"abstract":"Object detection and recognition in realtime is the key task in many computer vision applications such as security surveillance, medical diagnosis, automated vehicle systems, etc. Now-a-days many deep learning techniques, especially convolutional neural networks (CNN) is widely used for real-time image detection and classification. The development of CNN models boosts the accuracy of object detection. However, the complex and data-intensive processing slows down the performance while implemented on hardware. This paper presents a low-powered, portable prototype on Xilinx PYNQ Z2 board with Movidius neural compute stick (NCS) that accelerates the object detection in real-time. Also, the proposed prototype utilized You Only Look Once (YOLO) approach for object detection. Frames per second (FPS), computation time and the probability of object recognition are the parameters considered to evaluate the performance of the proposed prototype and outperform the existing models.","PeriodicalId":177307,"journal":{"name":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS49393.2020.9262996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Object detection and recognition in realtime is the key task in many computer vision applications such as security surveillance, medical diagnosis, automated vehicle systems, etc. Now-a-days many deep learning techniques, especially convolutional neural networks (CNN) is widely used for real-time image detection and classification. The development of CNN models boosts the accuracy of object detection. However, the complex and data-intensive processing slows down the performance while implemented on hardware. This paper presents a low-powered, portable prototype on Xilinx PYNQ Z2 board with Movidius neural compute stick (NCS) that accelerates the object detection in real-time. Also, the proposed prototype utilized You Only Look Once (YOLO) approach for object detection. Frames per second (FPS), computation time and the probability of object recognition are the parameters considered to evaluate the performance of the proposed prototype and outperform the existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Movidius神经计算棒的实时目标检测加速原型
实时目标检测和识别是许多计算机视觉应用的关键任务,如安全监控、医疗诊断、自动车辆系统等。目前,许多深度学习技术,特别是卷积神经网络(CNN)被广泛用于实时图像检测和分类。CNN模型的发展提高了目标检测的精度。然而,在硬件上实现时,复杂的数据密集型处理会降低性能。本文提出了一种基于Xilinx PYNQ Z2板的低功耗便携式原型机,该原型机采用Movidius神经计算棒(NCS)来加速实时目标检测。此外,所提出的原型利用You Only Look Once (YOLO)方法进行目标检测。每秒帧数(FPS)、计算时间和目标识别概率是评估原型性能并优于现有模型的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NoCSNN: A Scalable Interconnect Architecture for Neuromorphic Computing Systems Data Communication and Remote Monitoring using Raspberry Pi in a Solar-Wind-Biogas integrated Micro-grid system ISDCS 2020 Commentary Hardware Trojan Detection Using Improved Testability Measures Performance analysis of Pocket Doped Junction-Less TFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1