An Empirical Evaluation of Allgatherv on Multi-GPU Systems

Thomas B. Rolinger, T. Simon, Christopher D. Krieger
{"title":"An Empirical Evaluation of Allgatherv on Multi-GPU Systems","authors":"Thomas B. Rolinger, T. Simon, Christopher D. Krieger","doi":"10.1109/CCGRID.2018.00027","DOIUrl":null,"url":null,"abstract":"Applications for deep learning and big data analytics have compute and memory requirements that exceed the limits of a single GPU. However, effectively scaling out an application to multiple GPUs is challenging due to the complexities of communication between the GPUs, particularly for collective communication with irregular message sizes. In this work, we provide a performance evaluation of the Allgatherv routine on multi-GPU systems, focusing on GPU network topology and the communication library used. We present results from the OSU-micro benchmark as well as conduct a case study for sparse tensor factorization, one application that uses Allgatherv with highly irregular message sizes. We extend our existing tensor factorization tool to run on systems with different node counts and varying number of GPUs per node. We then evaluate the communication performance of our tool when using traditional MPI, CUDA-aware MVAPICH and NCCL across a suite of real-world data sets on three different systems: a 16-node cluster with one GPU per node, NVIDIA's DGX-1 with 8 GPUs and Cray's CS-Storm with 16 GPUs. Our results show that irregularity in the tensor data sets produce trends that contradict those in the OSU micro-benchmark, as well as trends that are absent from the benchmark.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Applications for deep learning and big data analytics have compute and memory requirements that exceed the limits of a single GPU. However, effectively scaling out an application to multiple GPUs is challenging due to the complexities of communication between the GPUs, particularly for collective communication with irregular message sizes. In this work, we provide a performance evaluation of the Allgatherv routine on multi-GPU systems, focusing on GPU network topology and the communication library used. We present results from the OSU-micro benchmark as well as conduct a case study for sparse tensor factorization, one application that uses Allgatherv with highly irregular message sizes. We extend our existing tensor factorization tool to run on systems with different node counts and varying number of GPUs per node. We then evaluate the communication performance of our tool when using traditional MPI, CUDA-aware MVAPICH and NCCL across a suite of real-world data sets on three different systems: a 16-node cluster with one GPU per node, NVIDIA's DGX-1 with 8 GPUs and Cray's CS-Storm with 16 GPUs. Our results show that irregularity in the tensor data sets produce trends that contradict those in the OSU micro-benchmark, as well as trends that are absent from the benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Allgatherv在多gpu系统上的实证评价
深度学习和大数据分析的应用程序对计算和内存的要求超过了单个GPU的限制。然而,由于gpu之间通信的复杂性,有效地将应用程序扩展到多个gpu是具有挑战性的,特别是对于具有不规则消息大小的集体通信。在这项工作中,我们提供了Allgatherv例程在多GPU系统上的性能评估,重点关注GPU网络拓扑和使用的通信库。我们展示了来自OSU-micro基准测试的结果,并对稀疏张量分解进行了案例研究,稀疏张量分解是一个使用Allgatherv处理高度不规则消息大小的应用程序。我们扩展了现有的张量分解工具,以在具有不同节点计数和每个节点的不同gpu数量的系统上运行。然后,我们在三个不同系统上的一套真实世界数据集上使用传统的MPI, cuda感知MVAPICH和NCCL时评估我们的工具的通信性能:一个16节点集群,每个节点一个GPU, NVIDIA的DGX-1有8个GPU, Cray的CS-Storm有16个GPU。我们的研究结果表明,张量数据集的不规则性产生了与OSU微基准相矛盾的趋势,以及基准中没有的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1