Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei
{"title":"Flat and Shallow: Understanding Fake Image Detection Models by Architecture Profiling","authors":"Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei","doi":"10.1145/3469877.3490566","DOIUrl":null,"url":null,"abstract":"Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.