Flat and Shallow: Understanding Fake Image Detection Models by Architecture Profiling

Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei
{"title":"Flat and Shallow: Understanding Fake Image Detection Models by Architecture Profiling","authors":"Jing-Fen Xu, Wei Zhang, Yalong Bai, Qibin Sun, Tao Mei","doi":"10.1145/3469877.3490566","DOIUrl":null,"url":null,"abstract":"Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital image manipulations have been heavily abused to spread misinformation. Despite the great efforts dedicated in research community, prior works are mostly performance-driven, i.e., optimizing performances using standard/heavy networks designed for semantic classification. A thorough understanding for fake images detection models is still missing. This paper studies the essential ingredients for a good fake image detection model, by profiling the best-performing architectures. Specifically, we conduct a thorough analysis on a massive number of detection models, and observe how the performances are affected by different patterns of network structure. Our key findings include: 1) with the same computational budget, flat network structures (e.g., large kernel sizes, wide connections) perform better than commonly used deep networks; 2) operations in shallow layers deserve more computational capacities to trade-off performance and computational cost. These findings sketch a general profile for essential models of fake image detection, which show clear differences with those for semantic classification. Furthermore, based on our analysis, we propose a new Depth-Separable Search Space (DSS) for fake image detection. Compared to state-of-the-art methods, our model achieves competitive performance while saving more than 50% parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面和浅:通过架构分析理解假图像检测模型
数字图像处理被严重滥用来传播错误信息。尽管研究界付出了巨大的努力,但之前的工作大多是性能驱动的,即使用为语义分类设计的标准/重型网络来优化性能。对假图像检测模型的深入理解仍然缺失。本文通过分析性能最好的体系结构,研究了一个好的假图像检测模型的基本成分。具体来说,我们对大量的检测模型进行了深入的分析,并观察了不同网络结构模式对性能的影响。我们的主要发现包括:1)在相同的计算预算下,平面网络结构(例如,大内核大小,宽连接)比常用的深度网络性能更好;2)为了权衡性能和计算成本,浅层操作需要更多的计算能力。这些发现勾勒出假图像检测的基本模型的总体概况,并显示出与语义分类的明显差异。在此基础上,我们提出了一种新的深度可分离搜索空间(DSS)用于假图像检测。与最先进的方法相比,我们的模型实现了具有竞争力的性能,同时节省了50%以上的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1