Meta H. Wildenbeest , Henri Kiers , Matthijs Tuijt , Maarten R. Prins , Jaap H. van Dieën
{"title":"Trunk resistance to mechanical perturbations, associations with low back pain, pain-related cognitions and movement precision","authors":"Meta H. Wildenbeest , Henri Kiers , Matthijs Tuijt , Maarten R. Prins , Jaap H. van Dieën","doi":"10.1016/j.humov.2023.103159","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Pain-related cognitions are associated with motor control changes in people with chronic low-back pain (CLBP). The mechanism underlying this association is unclear. We propose that perceived threat increases muscle-spindle-reflex-gains, which reduces the effect of mechanical perturbations, and simultaneously decreases movement precision. <em>Aim:</em> To evaluate effects of CLBP and pain-related cognitions on the impact of mechanical perturbations on trunk movement, and associations between these perturbation effects and movement precision.</p></div><div><h3>Methods</h3><p><span>30 participants with CLBP and 30 healthy controls, performed two consecutive trials of a seated repetitive reaching task. During both trials participants were warned for mechanical perturbations, which were only administered during the second trial. The perturbation effect was characterized by the deviation of the trajectory of the T8 vertebra relative to the </span>sacrum. Trunk movement precision was expressed as tracking error during a trunk movement target tracking task. We assessed pain-related cognitions with the task-specific ‘Expected Back Strain’-scale (EBS). We used a two-way-Anova to assess the effect of Group (CLBP vs back-healthy) and dichotomized EBS (higher vs lower) on the perturbation effect, and a Pearson's correlation to assess associations between perturbation effects and movement precision.</p></div><div><h3>Findings</h3><p>Higher EBS was associated with smaller perturbation effects (<em>p</em> ≤ 0.011). A negative correlation was found between the perturbation effect and the tracking error, in the higher EBS-group (<em>r</em> = −0.5, <em>p</em> = 0.013).</p></div><div><h3>Interpretation</h3><p>These results demonstrate that pain-related cognitions influence trunk movement control and support the idea that more negative pain-related cognitions lead to an increased resistance against perturbations, at the expense of movement precision.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945723001057","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Pain-related cognitions are associated with motor control changes in people with chronic low-back pain (CLBP). The mechanism underlying this association is unclear. We propose that perceived threat increases muscle-spindle-reflex-gains, which reduces the effect of mechanical perturbations, and simultaneously decreases movement precision. Aim: To evaluate effects of CLBP and pain-related cognitions on the impact of mechanical perturbations on trunk movement, and associations between these perturbation effects and movement precision.
Methods
30 participants with CLBP and 30 healthy controls, performed two consecutive trials of a seated repetitive reaching task. During both trials participants were warned for mechanical perturbations, which were only administered during the second trial. The perturbation effect was characterized by the deviation of the trajectory of the T8 vertebra relative to the sacrum. Trunk movement precision was expressed as tracking error during a trunk movement target tracking task. We assessed pain-related cognitions with the task-specific ‘Expected Back Strain’-scale (EBS). We used a two-way-Anova to assess the effect of Group (CLBP vs back-healthy) and dichotomized EBS (higher vs lower) on the perturbation effect, and a Pearson's correlation to assess associations between perturbation effects and movement precision.
Findings
Higher EBS was associated with smaller perturbation effects (p ≤ 0.011). A negative correlation was found between the perturbation effect and the tracking error, in the higher EBS-group (r = −0.5, p = 0.013).
Interpretation
These results demonstrate that pain-related cognitions influence trunk movement control and support the idea that more negative pain-related cognitions lead to an increased resistance against perturbations, at the expense of movement precision.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."