{"title":"Convection and motion characteristics of granular media in horizontal vibratory finishing","authors":"Jiaming Wang, Xiuhong Li, Wenhui Li, Siyuan Cheng, Hao Li, Shengqiang Yang","doi":"10.1007/s10035-023-01366-3","DOIUrl":null,"url":null,"abstract":"<div><p>To explore the characteristics of the flow field and the movement of granular media in horizontal vibration, the motion behavior of granular media was studied based on the horizontal vibratory finishing blade process. The evolution of the fluidization process of granular media under different frequencies and amplitudes was analyzed. The relationship between granular media's long-term and short-term movements and their effects was clarified. And the results were verified by PIV technology. The results show that increasing the frequency and amplitude can improve the fluidization degree of the particle system. Moreover, increasing the amplitude is more effective than frequency. Due to the blade's obstruction, the flow field's characteristic is an asymmetric double rolls. Granular media's macro-movement is divided into long-term and short-term motion based on particles' movement characteristics. The short-term motion of granular media mainly realizes the polishing and finishing of the blade, while the long-term motion realizes the renewal and replacement of granular media. The long-term and short-term movements are positively correlated. This study provides a reference for selecting process parameters and regulating particle flow fields in horizontal vibration.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01366-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the characteristics of the flow field and the movement of granular media in horizontal vibration, the motion behavior of granular media was studied based on the horizontal vibratory finishing blade process. The evolution of the fluidization process of granular media under different frequencies and amplitudes was analyzed. The relationship between granular media's long-term and short-term movements and their effects was clarified. And the results were verified by PIV technology. The results show that increasing the frequency and amplitude can improve the fluidization degree of the particle system. Moreover, increasing the amplitude is more effective than frequency. Due to the blade's obstruction, the flow field's characteristic is an asymmetric double rolls. Granular media's macro-movement is divided into long-term and short-term motion based on particles' movement characteristics. The short-term motion of granular media mainly realizes the polishing and finishing of the blade, while the long-term motion realizes the renewal and replacement of granular media. The long-term and short-term movements are positively correlated. This study provides a reference for selecting process parameters and regulating particle flow fields in horizontal vibration.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.