Demonstration of a switched CV-QKD network

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2023-09-21 DOI:10.1140/epjqt/s40507-023-00194-x
Hans H. Brunner, Chi-Hang Fred Fung, Momtchil Peev, Rubén B. Méndez, Laura Ortiz, Juan P. Brito, Vicente Martín, José M. Rivas-Moscoso, Felipe Jiménez, Antonio A. Pastor, Diego R. López
{"title":"Demonstration of a switched CV-QKD network","authors":"Hans H. Brunner,&nbsp;Chi-Hang Fred Fung,&nbsp;Momtchil Peev,&nbsp;Rubén B. Méndez,&nbsp;Laura Ortiz,&nbsp;Juan P. Brito,&nbsp;Vicente Martín,&nbsp;José M. Rivas-Moscoso,&nbsp;Felipe Jiménez,&nbsp;Antonio A. Pastor,&nbsp;Diego R. López","doi":"10.1140/epjqt/s40507-023-00194-x","DOIUrl":null,"url":null,"abstract":"<div><p>A quantum channel is a physical media able to carry quantum signals. Quantum key distribution (QKD) requires direct quantum channels between every pair of prepare-and-measure modules. This requirement heavily compromises the scalability of networks of directly connected QKD modules. A way to avoid this problem is to introduce switches that can dynamically reconfigure the set of connections. The reconfiguration of a quantum channel implies that the modules using it can adapt to the new channel and peer.</p><p>The maturity and flexibility of continuous-variable QKD (CV-QKD) qualifies it as a strong contender for integration into optical communication networks. Here we present the implementation of a switched CV-QKD network embedded in the Madrid quantum testbed. The optical switching of the quantum paths significantly reduces the amount of required QKD modules and facilitates the scalability of the network. This demonstration highlights the flexibility and ease of integration of this emerging technology.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00194-x","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00194-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

A quantum channel is a physical media able to carry quantum signals. Quantum key distribution (QKD) requires direct quantum channels between every pair of prepare-and-measure modules. This requirement heavily compromises the scalability of networks of directly connected QKD modules. A way to avoid this problem is to introduce switches that can dynamically reconfigure the set of connections. The reconfiguration of a quantum channel implies that the modules using it can adapt to the new channel and peer.

The maturity and flexibility of continuous-variable QKD (CV-QKD) qualifies it as a strong contender for integration into optical communication networks. Here we present the implementation of a switched CV-QKD network embedded in the Madrid quantum testbed. The optical switching of the quantum paths significantly reduces the amount of required QKD modules and facilitates the scalability of the network. This demonstration highlights the flexibility and ease of integration of this emerging technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演示一个交换的CV-QKD网络
量子信道是一种能够携带量子信号的物理介质。量子密钥分发(QKD)需要在每对准备-测量模块之间建立直接的量子通道。这种要求严重损害了直接连接的QKD模块网络的可扩展性。避免此问题的一种方法是引入可以动态重新配置连接集的交换机。量子信道的重构意味着使用它的模块可以适应新的信道和对等体。连续变量QKD (CV-QKD)的成熟度和灵活性使其成为集成到光通信网络中的有力竞争者。在这里,我们提出了一个嵌入在马德里量子试验台的交换CV-QKD网络的实现。量子路径的光交换大大减少了所需的QKD模块数量,并有利于网络的可扩展性。这个演示突出了这种新兴技术集成的灵活性和易用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
A computational study and analysis of Variational Quantum Eigensolver over multiple parameters for molecules and ions Quantum data encoding: a comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy A methodology to select and adjust quantum noise models through emulators: benchmarking against real backends An advanced quantum support vector machine for power quality disturbance detection and identification Correction: Keep it secret, keep it safe: teaching quantum key distribution in high school
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1