A quality assessment of Korean–English patent machine translation

Jieun Lee, Hyoeun Choi
{"title":"A quality assessment of Korean–English patent machine translation","authors":"Jieun Lee, Hyoeun Choi","doi":"10.1075/forum.00030.lee","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to investigate the quality Korean–English patent translations by three machine translation (MT) engines based on automatic and human evaluations of Korean to English Patent Automatic Translation (K2E-PAT), a pattern-based statistical MT; and Patent Translate and WIPO Translate, both neural MTs. For title translations, WIPO Translate scored the highest in automatic and human evaluations, while results were mixed for the other two MTs. K2E-PAT slightly outperformed Patent Translate in automatic evaluation, whereas Patent Translate outperformed K2E-PAT in human evaluation. For abstract translations, Patent Translate scored the highest in automatic evaluation, followed by WIPO Translate and K2E-PAT. In human evaluation, the ranking order was the same as that of title translations, with WIPO Translate scoring the highest on average. The results indicated correlations between automatic and human evaluations, and the NMTs subject to the current study still do not render satisfactory gist translation from Korean to English.","PeriodicalId":41948,"journal":{"name":"Forum-Revue Internationale d Interpretation et de Traduction-International Journal of Interpretation and Translation","volume":"61 10","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum-Revue Internationale d Interpretation et de Traduction-International Journal of Interpretation and Translation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/forum.00030.lee","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper aims to investigate the quality Korean–English patent translations by three machine translation (MT) engines based on automatic and human evaluations of Korean to English Patent Automatic Translation (K2E-PAT), a pattern-based statistical MT; and Patent Translate and WIPO Translate, both neural MTs. For title translations, WIPO Translate scored the highest in automatic and human evaluations, while results were mixed for the other two MTs. K2E-PAT slightly outperformed Patent Translate in automatic evaluation, whereas Patent Translate outperformed K2E-PAT in human evaluation. For abstract translations, Patent Translate scored the highest in automatic evaluation, followed by WIPO Translate and K2E-PAT. In human evaluation, the ranking order was the same as that of title translations, with WIPO Translate scoring the highest on average. The results indicated correlations between automatic and human evaluations, and the NMTs subject to the current study still do not render satisfactory gist translation from Korean to English.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韩英专利机器翻译质量评价
摘要本文旨在研究韩英专利自动翻译(K2E-PAT)——一种基于模式的统计机器翻译(tm)——基于自动和人工评估的三种机器翻译(MT)引擎对韩英专利翻译质量的影响;对于标题翻译,WIPO Translate在自动和人工评估中得分最高,而其他两个mt的结果则好坏参半。k2b - pat在自动评估中略优于专利翻译,而专利翻译在人工评估中优于k2b - pat。对于摘要翻译,专利翻译在自动评价中得分最高,其次是WIPO翻译和K2E-PAT。在人工评价中,排名顺序与标题翻译相同,WIPO翻译的平均得分最高。结果表明,自动评价和人工评价之间存在相关性,并且目前研究的nmt仍然不能提供令人满意的韩语到英语的主旨翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
9
期刊最新文献
A critical review of research on translation and memory A quality assessment of Korean–English patent machine translation Review of Yu, Xu & Libo (2020): An Anthology of Traditional Chinese Ideas on Translation Extent and patterns Choosing effective teaching methods for translation technology classrooms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1