André Rodrigues Monticeli, Pedro Paulo Balestrassi, Antônio Carlos Zambroni de Souza, Eduardo Gomes Carvalho, Lázaro Eduardo da Silva, Paulo César Mappa
{"title":"Mixture Design of Experiments as Strategy for Portfolio Optimization","authors":"André Rodrigues Monticeli, Pedro Paulo Balestrassi, Antônio Carlos Zambroni de Souza, Eduardo Gomes Carvalho, Lázaro Eduardo da Silva, Paulo César Mappa","doi":"10.4025/actascitechnol.v45i1.63500","DOIUrl":null,"url":null,"abstract":"Portfolio analysis is widely used by financial investors to find portfolios producing efficient results under various economic conditions. Markowitz started the portfolio optimization approach through mean-variance, whose objective is to minimize risk and maximize the return. This study is called Markowitz Mean-Variance Theory (MVP). An optimal portfolio has a good return and low risk, in addition to being well diversified. In this paper, we proposed a methodology for obtaining an optimal portfolio with the highest expected return and the lowest risk. This methodology uses Mixture Design of Experiments (MDE) as a strategy for building non-linear models of risk and return in portfolio optimization; computational replicas in MDE to capture dynamical evolution of series; Shannon entropy index to handle better portfolio diversification; and desirability function to optimize multiple variables, leading to the maximum expected return and lowest risk. To illustrate this proposal, some time series were simulated by ARMA-GARCH models. The result is compared to the efficient frontier generated by the traditional theory of Markowitz Mean-Variance (MVP). The results show that this methodology facilitates decision making, since the portfolio is obtained in the non-dominated region, in a unique combination. The advantage of using the proposed method is that the replicas improve the model precision.","PeriodicalId":7140,"journal":{"name":"Acta Scientiarum-technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum-technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4025/actascitechnol.v45i1.63500","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Portfolio analysis is widely used by financial investors to find portfolios producing efficient results under various economic conditions. Markowitz started the portfolio optimization approach through mean-variance, whose objective is to minimize risk and maximize the return. This study is called Markowitz Mean-Variance Theory (MVP). An optimal portfolio has a good return and low risk, in addition to being well diversified. In this paper, we proposed a methodology for obtaining an optimal portfolio with the highest expected return and the lowest risk. This methodology uses Mixture Design of Experiments (MDE) as a strategy for building non-linear models of risk and return in portfolio optimization; computational replicas in MDE to capture dynamical evolution of series; Shannon entropy index to handle better portfolio diversification; and desirability function to optimize multiple variables, leading to the maximum expected return and lowest risk. To illustrate this proposal, some time series were simulated by ARMA-GARCH models. The result is compared to the efficient frontier generated by the traditional theory of Markowitz Mean-Variance (MVP). The results show that this methodology facilitates decision making, since the portfolio is obtained in the non-dominated region, in a unique combination. The advantage of using the proposed method is that the replicas improve the model precision.
期刊介绍:
The journal publishes original articles in all areas of Technology, including: Engineerings, Physics, Chemistry, Mathematics, Statistics, Geosciences and Computation Sciences.
To establish the public inscription of knowledge and its preservation; To publish results of research comprising ideas and new scientific suggestions; To publicize worldwide information and knowledge produced by the scientific community; To speech the process of scientific communication in Technology.