{"title":"A 0.45-V low-power low-noise amplifier using a wideband image-rejection technology","authors":"Jian-Yu Hsieh, Wei-Ting Chen","doi":"10.1049/mia2.12432","DOIUrl":null,"url":null,"abstract":"<p>A 0.45-V low-power wideband image-rejection low-noise amplifier (LNA) using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm CMOS process has been proposed. The supply voltage, power consumption and chip area of the proposed LNA can be reduced using forward body biasing, folded cascode topology and a feedback capacitor. Moreover, a wideband gain-enhancement-and-image-rejection (WGEIR) circuit including a variable resonant LC tank and a common-gate amplifier has been developed. The inductance of the variable resonant LC tank can enlarge the gain of the proposed LNA. The capacitance of the variable resonant LC tank can achieve the image rejection. Using the WGEIR circuit, gain enhancement and wideband image rejection can be achieved simultaneously. The variable inductors and capacitors are developed for suppressing wideband image signals and good image rejection ratio (IRR). The combination of the variable inductors and capacitors can achieve eight image-reject frequencies under three control voltages. The proposed LNA shows the measured results including a 10-dB power gain, a 3-dB noise figure (NF) and a −11-dBm input third-order intercept point (<i>IIP</i><sub>3</sub>) at 2.4 GHz, respectively. The measured IRR ranges from 18 to 23 dBc around 3.6–4.5 GHz, which is 900-MHz image-reject bandwidth. The measured proposed LNA using the mentioned techniques consumes 0.8-mW power.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"17 15","pages":"1130-1138"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12432","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12432","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A 0.45-V low-power wideband image-rejection low-noise amplifier (LNA) using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm CMOS process has been proposed. The supply voltage, power consumption and chip area of the proposed LNA can be reduced using forward body biasing, folded cascode topology and a feedback capacitor. Moreover, a wideband gain-enhancement-and-image-rejection (WGEIR) circuit including a variable resonant LC tank and a common-gate amplifier has been developed. The inductance of the variable resonant LC tank can enlarge the gain of the proposed LNA. The capacitance of the variable resonant LC tank can achieve the image rejection. Using the WGEIR circuit, gain enhancement and wideband image rejection can be achieved simultaneously. The variable inductors and capacitors are developed for suppressing wideband image signals and good image rejection ratio (IRR). The combination of the variable inductors and capacitors can achieve eight image-reject frequencies under three control voltages. The proposed LNA shows the measured results including a 10-dB power gain, a 3-dB noise figure (NF) and a −11-dBm input third-order intercept point (IIP3) at 2.4 GHz, respectively. The measured IRR ranges from 18 to 23 dBc around 3.6–4.5 GHz, which is 900-MHz image-reject bandwidth. The measured proposed LNA using the mentioned techniques consumes 0.8-mW power.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf