{"title":"A combined aperture-coupled membrane microstrip patch antenna array","authors":"Zhao-rui Wang, Nan Wang, Kai-lun Zhang","doi":"10.1049/mia2.12545","DOIUrl":null,"url":null,"abstract":"<p>A novel lightweight L-band combined aperture-coupled microstrip antenna has been proposed for synthetic aperture radar (SAR) applications. The proposed antenna element is composed of only two membranes. This design innovatively integrates the coupling aperture with the radiating patch, significantly reducing the number of required dielectric layers to achieve a simplified and lightweight structure. The feed line is placed on the front side to facilitate integration with the transmit/receive (T/R) module. Simulation results demonstrate that the antenna element exhibits excellent radiation pattern performance and bandwidth. A <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>×</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $4\\times 4$</annotation>\n </semantics></math> passive antenna array utilising polyimide as the dielectric material was fabricated and measured to validate its performance. This array employs a 4-stage Wilkinson power divider network. Measurements show that S<sub>1,1</sub> is below −15 dB in the frequency range from 1.15 to 1.49 GHz, with a maximum efficiency of 72.87%. Additionally, an <span></span><math>\n <semantics>\n <mrow>\n <mn>8</mn>\n <mo>×</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $8\\times 4$</annotation>\n </semantics></math> phased array antenna was fabricated and tested. This array demonstrated stable radiation pattern performance over an azimuthal scan range of <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>25</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $\\pm 25{}^{\\circ}$</annotation>\n </semantics></math> and an elevation scan of <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>15</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $\\pm 15{}^{\\circ}$</annotation>\n </semantics></math>. This design offers a new option for antenna modules in spaceborne SAR applications.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12545","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel lightweight L-band combined aperture-coupled microstrip antenna has been proposed for synthetic aperture radar (SAR) applications. The proposed antenna element is composed of only two membranes. This design innovatively integrates the coupling aperture with the radiating patch, significantly reducing the number of required dielectric layers to achieve a simplified and lightweight structure. The feed line is placed on the front side to facilitate integration with the transmit/receive (T/R) module. Simulation results demonstrate that the antenna element exhibits excellent radiation pattern performance and bandwidth. A passive antenna array utilising polyimide as the dielectric material was fabricated and measured to validate its performance. This array employs a 4-stage Wilkinson power divider network. Measurements show that S1,1 is below −15 dB in the frequency range from 1.15 to 1.49 GHz, with a maximum efficiency of 72.87%. Additionally, an phased array antenna was fabricated and tested. This array demonstrated stable radiation pattern performance over an azimuthal scan range of and an elevation scan of . This design offers a new option for antenna modules in spaceborne SAR applications.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf