J. Praveenchandar, S. Vinoth Kumar, A. Christopher Paul, M. A Mukunthan, K. Maharajan
{"title":"Deep Learning Algorithms in Mobile Edge with Real-Time Abnormal Event Detection for 5G-IoT Devices","authors":"J. Praveenchandar, S. Vinoth Kumar, A. Christopher Paul, M. A Mukunthan, K. Maharajan","doi":"10.3991/ijim.v17i17.42805","DOIUrl":null,"url":null,"abstract":"IoT is becoming increasingly popular due to its quick expansion and variety of applications. In addition, 5G technology helps with communication and network connectivity. This work integrates C-RAN with IoT networks to provide an experimental 5G testbed. In a 5G IoT environment, this experience is utilized to enhance both perpendicular and flat localization (3D localization). DRCaG, an acronym for the proposed model, stands for a deep, complicated network with a gated layer on top. The performance of the proposed model has been demonstrated through extensive simulations in terms of learning reduction, accuracy, and matrix disorientation, with a variable signal-to-noise ratio (SNR) spanning from 20 dB to + 20 dB, which illustrates the superiority of DRCaG compared to others. An online, end-to-end solution based on deep learning techniques is presented in this study for the fast, precise, reliable, and automatic detection of diverse petty crime types. By detecting tiny crimes like hostility, bag snatching, and vandalism, the suggested system may not only identify unusual passenger behavior like vandalism and accidents but also improve passenger security. The solution performs admirably in a variety of use cases and environmental settings.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i17.42805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
IoT is becoming increasingly popular due to its quick expansion and variety of applications. In addition, 5G technology helps with communication and network connectivity. This work integrates C-RAN with IoT networks to provide an experimental 5G testbed. In a 5G IoT environment, this experience is utilized to enhance both perpendicular and flat localization (3D localization). DRCaG, an acronym for the proposed model, stands for a deep, complicated network with a gated layer on top. The performance of the proposed model has been demonstrated through extensive simulations in terms of learning reduction, accuracy, and matrix disorientation, with a variable signal-to-noise ratio (SNR) spanning from 20 dB to + 20 dB, which illustrates the superiority of DRCaG compared to others. An online, end-to-end solution based on deep learning techniques is presented in this study for the fast, precise, reliable, and automatic detection of diverse petty crime types. By detecting tiny crimes like hostility, bag snatching, and vandalism, the suggested system may not only identify unusual passenger behavior like vandalism and accidents but also improve passenger security. The solution performs admirably in a variety of use cases and environmental settings.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications