Peijun Tian , Yunfei Hou , Zheng Wang , Jiaona Jiang , Xin Qian , Zhihao Qu , Jianxin Zhao , Gang Wang , Wei Chen
{"title":"Probiotics administration alleviates cognitive impairment and circadian rhythm disturbance induced by sleep deprivation","authors":"Peijun Tian , Yunfei Hou , Zheng Wang , Jiaona Jiang , Xin Qian , Zhihao Qu , Jianxin Zhao , Gang Wang , Wei Chen","doi":"10.26599/FSHW.2022.9250162","DOIUrl":null,"url":null,"abstract":"<div><p>Gut microbiome is indispensable for maintaining normal brain function. Specifically, gut microbiota plays a causal role in sleep deprivation (SD)-induced cognitive impairment. In this study, neurobehavioral effects of the <em>Bifidobacterium breve</em> strain (CCFM1025) were assessed in sleep-deprived mice. CCFM1025 improved the body weight and food and water intake of the mice. It also alleviated SD-induced cognitive behavioural abnormalities (in the novel object recognition test), but did not show beneficial effects on mood- and spatial memory-related behaviours. CCFM1025 significantly altered the gut microbial composition and genome function. Key microbial metabolites that may regulate sleep function were also identified, such as isovaleric acid and <em>γ</em>-aminobutyric acid in the gut and purine metabolites in the serum. Those metabolites may participate in gut-brain communication by acting on the striatal melatonin system, for example to increase melatonin levels, and by regulating the expression of circadian clock genes such as those encoding the adenosine A<sub>2A</sub> receptor and period circadian regulator 1. Collectively, administration of probiotics alleviated cognitive impairment and circadian rhythm disturbance induced by SD via modulation of gut microbiome and its metabolites. These findings may help guide the treatment of insomnia or other sleep disorders via dietary strategies.</p></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 4","pages":"Pages 1951-1961"},"PeriodicalIF":5.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213453024001691/pdfft?md5=c74685f76a5462939816956da54773e6&pid=1-s2.0-S2213453024001691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024001691","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiome is indispensable for maintaining normal brain function. Specifically, gut microbiota plays a causal role in sleep deprivation (SD)-induced cognitive impairment. In this study, neurobehavioral effects of the Bifidobacterium breve strain (CCFM1025) were assessed in sleep-deprived mice. CCFM1025 improved the body weight and food and water intake of the mice. It also alleviated SD-induced cognitive behavioural abnormalities (in the novel object recognition test), but did not show beneficial effects on mood- and spatial memory-related behaviours. CCFM1025 significantly altered the gut microbial composition and genome function. Key microbial metabolites that may regulate sleep function were also identified, such as isovaleric acid and γ-aminobutyric acid in the gut and purine metabolites in the serum. Those metabolites may participate in gut-brain communication by acting on the striatal melatonin system, for example to increase melatonin levels, and by regulating the expression of circadian clock genes such as those encoding the adenosine A2A receptor and period circadian regulator 1. Collectively, administration of probiotics alleviated cognitive impairment and circadian rhythm disturbance induced by SD via modulation of gut microbiome and its metabolites. These findings may help guide the treatment of insomnia or other sleep disorders via dietary strategies.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.