{"title":"Experimental and numerical investigations of induction heating for Ti-6Al-4V sheets and epoxy/carbon fiber composite laminates","authors":"Aysun Guven Citir , Serkan Toros , Fahrettin Ozturk","doi":"10.1016/j.jer.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to present the electromagnetic and the thermal multi-field coupling model of the induction heating process for numerical simulation based on the finite element method. One of the most important difficulties encountered in the induction heating processes is to ensure homogeneous temperature distribution throughout the part. To improve the uniform temperature distribution in the sheet, the induction heating system is modelled with the ANSYS software taking into account some operational and geometrical parameters including current density and coupling distance between induction coil and sheet. Induction heating simulations were performed for all simulations at 20 kHz frequency ANSYS Maxwell. The numerical model has been verified by the conducted experiments for Ti6Al4V at the current of 50 A, 125 A, and 200 A, and the 1 mm and 3 mm gap distances. The relative error of the maximum temperature between the experiment and simulation was found around 14 % recorded at 25 s measurements. In addition, the effects of the current and the frequencies on the induction heating were evaluated by the verified numerical model for epoxy/carbon fiber (UD prepreg) and epoxy/carbon fiber (Woven prepreg) plates. The results show that the induction heating model is suitable and efficient to determine the temperature distribution within the thin plates by the finite element method.</p></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"12 2","pages":"Pages 256-265"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307187723002699/pdfft?md5=3b2865e9476ec41c564177340378afd1&pid=1-s2.0-S2307187723002699-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723002699","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to present the electromagnetic and the thermal multi-field coupling model of the induction heating process for numerical simulation based on the finite element method. One of the most important difficulties encountered in the induction heating processes is to ensure homogeneous temperature distribution throughout the part. To improve the uniform temperature distribution in the sheet, the induction heating system is modelled with the ANSYS software taking into account some operational and geometrical parameters including current density and coupling distance between induction coil and sheet. Induction heating simulations were performed for all simulations at 20 kHz frequency ANSYS Maxwell. The numerical model has been verified by the conducted experiments for Ti6Al4V at the current of 50 A, 125 A, and 200 A, and the 1 mm and 3 mm gap distances. The relative error of the maximum temperature between the experiment and simulation was found around 14 % recorded at 25 s measurements. In addition, the effects of the current and the frequencies on the induction heating were evaluated by the verified numerical model for epoxy/carbon fiber (UD prepreg) and epoxy/carbon fiber (Woven prepreg) plates. The results show that the induction heating model is suitable and efficient to determine the temperature distribution within the thin plates by the finite element method.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).