Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, Ximena Vargas
{"title":"To what extent does river routing matter in hydrological modeling?","authors":"Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, Ximena Vargas","doi":"10.5194/hess-27-3505-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Spatially distributed hydrology and land surface models are typically applied in combination with river routing schemes that convert instantaneous runoff into streamflow. Nevertheless, the development of such schemes has been somehow disconnected from hydrologic model calibration research, although both seek to achieve more realistic streamflow simulations. In this paper, we seek to bridge this gap to understand the extent to which the configuration of routing schemes affects hydrologic model parameter searches in water resources applications. To this end, we configure the Variable Infiltration Capacity (VIC) model coupled with the mizuRoute routing model in the Cautín River basin (2770 km2), Chile. We use the Latin hypercube sampling (LHS) method to generate 3500 different model parameters sets, for which basin-averaged runoff estimates are obtained directly (no routing or instantaneous runoff case) and are subsequently compared against outputs from four routing schemes (unit hydrograph, Lagrangian kinematic wave, Muskingum–Cunge, and diffusive wave) applied with five different routing time steps (1, 2, 3, 4, and 6 h). The results show that incorporating routing schemes may alter streamflow simulations at sub-daily, daily, and even monthly timescales. The maximum Kling–Gupta efficiency (KGE) obtained for daily streamflow increases from 0.64 (instantaneous runoff) to 0.81 (for the best routing scheme), and such improvements do not depend on the routing time step. Moreover, the optimal parameter sets may differ depending on the routing scheme configuration, affecting the baseflow contribution to total runoff. Including routing models decreases streamflow values in flood frequency curves and may alter the probabilistic distribution of the medium- and low-flow segments of the flow duration curve considerably (compared to the case without routing). More generally, the results presented here highlight the potential impacts of river routing implementations on water resources applications that involve hydrologic models and, in particular, parameter calibration.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-3505-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Spatially distributed hydrology and land surface models are typically applied in combination with river routing schemes that convert instantaneous runoff into streamflow. Nevertheless, the development of such schemes has been somehow disconnected from hydrologic model calibration research, although both seek to achieve more realistic streamflow simulations. In this paper, we seek to bridge this gap to understand the extent to which the configuration of routing schemes affects hydrologic model parameter searches in water resources applications. To this end, we configure the Variable Infiltration Capacity (VIC) model coupled with the mizuRoute routing model in the Cautín River basin (2770 km2), Chile. We use the Latin hypercube sampling (LHS) method to generate 3500 different model parameters sets, for which basin-averaged runoff estimates are obtained directly (no routing or instantaneous runoff case) and are subsequently compared against outputs from four routing schemes (unit hydrograph, Lagrangian kinematic wave, Muskingum–Cunge, and diffusive wave) applied with five different routing time steps (1, 2, 3, 4, and 6 h). The results show that incorporating routing schemes may alter streamflow simulations at sub-daily, daily, and even monthly timescales. The maximum Kling–Gupta efficiency (KGE) obtained for daily streamflow increases from 0.64 (instantaneous runoff) to 0.81 (for the best routing scheme), and such improvements do not depend on the routing time step. Moreover, the optimal parameter sets may differ depending on the routing scheme configuration, affecting the baseflow contribution to total runoff. Including routing models decreases streamflow values in flood frequency curves and may alter the probabilistic distribution of the medium- and low-flow segments of the flow duration curve considerably (compared to the case without routing). More generally, the results presented here highlight the potential impacts of river routing implementations on water resources applications that involve hydrologic models and, in particular, parameter calibration.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.