Magdalena Uber, M. Haller, C. Brendel, G. Hillebrand, T. Hoffmann
{"title":"Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations","authors":"Magdalena Uber, M. Haller, C. Brendel, G. Hillebrand, T. Hoffmann","doi":"10.5194/hess-28-87-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Heavy rainfall is the main driver of soil erosion by water, which is a threat to soil and water resources across the globe. As a consequence of climate change, precipitation – especially extreme precipitation – is increasing in a warmer world, leading to an increase in rainfall erosivity. However, conventional global climate models struggle to represent extreme rain events and cannot provide precipitation data at the high spatiotemporal resolution that is needed for an accurate estimation of future rainfall erosivity. Convection-permitting simulations (CPSs), on the other hand, provide high-resolution precipitation data and a better representation of extreme rain events, but they are mostly limited to relatively small spatial extents and short time periods. Here, we present, for the first time, rainfall erosivity in a large modeling domain such as central Europe based on high-resolution CPS climate data generated with the regional climate model COSMO-CLM using the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario. We calculated rainfall erosivity for the past (1971–2000), present (2001–2019), near future (2031–2060) and far future (2071–2100). Our results showed that future increases in rainfall erosivity in central Europe can be up to 84 % in the region's river basins. These increases are much higher than previously estimated based on regression with mean annual precipitation. We conclude that despite remaining limitations, CPSs have an enormous and currently unexploited potential for climate impact studies on soil erosion. Thus, the soil erosion modeling community should closely follow the recent and future advances in climate modeling to take advantage of new CPSs for climate impact studies.\n","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"59 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/hess-28-87-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Heavy rainfall is the main driver of soil erosion by water, which is a threat to soil and water resources across the globe. As a consequence of climate change, precipitation – especially extreme precipitation – is increasing in a warmer world, leading to an increase in rainfall erosivity. However, conventional global climate models struggle to represent extreme rain events and cannot provide precipitation data at the high spatiotemporal resolution that is needed for an accurate estimation of future rainfall erosivity. Convection-permitting simulations (CPSs), on the other hand, provide high-resolution precipitation data and a better representation of extreme rain events, but they are mostly limited to relatively small spatial extents and short time periods. Here, we present, for the first time, rainfall erosivity in a large modeling domain such as central Europe based on high-resolution CPS climate data generated with the regional climate model COSMO-CLM using the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario. We calculated rainfall erosivity for the past (1971–2000), present (2001–2019), near future (2031–2060) and far future (2071–2100). Our results showed that future increases in rainfall erosivity in central Europe can be up to 84 % in the region's river basins. These increases are much higher than previously estimated based on regression with mean annual precipitation. We conclude that despite remaining limitations, CPSs have an enormous and currently unexploited potential for climate impact studies on soil erosion. Thus, the soil erosion modeling community should closely follow the recent and future advances in climate modeling to take advantage of new CPSs for climate impact studies.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.