A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+

IF 5.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Hydrology and Earth System Sciences Pub Date : 2024-01-02 DOI:10.5194/hess-28-21-2024
S. Abbas, R. Bailey, J. White, J. Arnold, M. White, Natalja Čerkasova, Jungang Gao
{"title":"A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+","authors":"S. Abbas, R. Bailey, J. White, J. Arnold, M. White, Natalja Čerkasova, Jungang Gao","doi":"10.5194/hess-28-21-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Parameter sensitivity analysis plays a critical role in efficiently determining main parameters, enhancing the effectiveness of the estimation of parameters and uncertainty quantification in hydrologic modeling. In this paper, we demonstrate an uncertainty and sensitivity analysis technique for the holistic Soil and Water Assessment Tool (SWAT+) model coupled with new gwflow module, spatially distributed, physically based groundwater flow modeling. The main calculated groundwater inflows and outflows include boundary exchange, pumping, saturation excess flow, groundwater–surface water exchange, recharge, groundwater–lake exchange and tile drainage outflow. We present the method for four watersheds located in different areas of the United States for 16 years (2000–2015), emphasizing regions of extensive tile drainage (Winnebago River, Minnesota, Iowa), intensive surface–groundwater interactions (Nanticoke River, Delaware, Maryland), groundwater pumping for irrigation (Cache River, Missouri, Arkansas) and mountain snowmelt (Arkansas Headwaters, Colorado). The main parameters of the coupled SWAT+gwflow model are estimated utilizing the parameter estimation software PEST. The monthly streamflow of holistic SWAT+gwflow is evaluated based on the Nash–Sutcliffe efficiency index (NSE), percentage bias (PBIAS), determination coefficient (R2) and Kling–Gupta efficiency coefficient (KGE), whereas groundwater head is evaluated using mean absolute error (MAE). The Morris method is employed to identify the key parameters influencing hydrological fluxes. Furthermore, the iterative ensemble smoother (iES) is utilized as a technique for uncertainty quantification (UQ) and parameter estimation (PE) and to decrease the computational cost owing to the large number of parameters. Depending on the watershed, key identified selected parameters include aquifer specific yield, aquifer hydraulic conductivity, recharge delay, streambed thickness, streambed hydraulic conductivity, area of groundwater inflow to tile, depth of tiles below ground surface, hydraulic conductivity of the drain perimeter, river depth (for groundwater flow processes), runoff curve number (for surface runoff processes), plant uptake compensation factor, soil evaporation compensation factor (for potential and actual evapotranspiration processes), soil available water capacity and percolation coefficient (for soil water processes). The presence of gwflow parameters permits the recognition of all key parameters in the surface and/or subsurface flow processes, with results substantially differing if the base SWAT+ models are utilized.\n","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"46 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/hess-28-21-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Parameter sensitivity analysis plays a critical role in efficiently determining main parameters, enhancing the effectiveness of the estimation of parameters and uncertainty quantification in hydrologic modeling. In this paper, we demonstrate an uncertainty and sensitivity analysis technique for the holistic Soil and Water Assessment Tool (SWAT+) model coupled with new gwflow module, spatially distributed, physically based groundwater flow modeling. The main calculated groundwater inflows and outflows include boundary exchange, pumping, saturation excess flow, groundwater–surface water exchange, recharge, groundwater–lake exchange and tile drainage outflow. We present the method for four watersheds located in different areas of the United States for 16 years (2000–2015), emphasizing regions of extensive tile drainage (Winnebago River, Minnesota, Iowa), intensive surface–groundwater interactions (Nanticoke River, Delaware, Maryland), groundwater pumping for irrigation (Cache River, Missouri, Arkansas) and mountain snowmelt (Arkansas Headwaters, Colorado). The main parameters of the coupled SWAT+gwflow model are estimated utilizing the parameter estimation software PEST. The monthly streamflow of holistic SWAT+gwflow is evaluated based on the Nash–Sutcliffe efficiency index (NSE), percentage bias (PBIAS), determination coefficient (R2) and Kling–Gupta efficiency coefficient (KGE), whereas groundwater head is evaluated using mean absolute error (MAE). The Morris method is employed to identify the key parameters influencing hydrological fluxes. Furthermore, the iterative ensemble smoother (iES) is utilized as a technique for uncertainty quantification (UQ) and parameter estimation (PE) and to decrease the computational cost owing to the large number of parameters. Depending on the watershed, key identified selected parameters include aquifer specific yield, aquifer hydraulic conductivity, recharge delay, streambed thickness, streambed hydraulic conductivity, area of groundwater inflow to tile, depth of tiles below ground surface, hydraulic conductivity of the drain perimeter, river depth (for groundwater flow processes), runoff curve number (for surface runoff processes), plant uptake compensation factor, soil evaporation compensation factor (for potential and actual evapotranspiration processes), soil available water capacity and percolation coefficient (for soil water processes). The presence of gwflow parameters permits the recognition of all key parameters in the surface and/or subsurface flow processes, with results substantially differing if the base SWAT+ models are utilized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SWAT+ 进行整体水文建模的参数估计、敏感性分析和不确定性分析框架
摘要参数灵敏度分析在有效确定主要参数、提高参数估计的有效性以及水文建模中的不确定性量化方面起着至关重要的作用。本文展示了水土评估工具 (SWAT+) 模型与新的 gwflow 模块相结合的不确定性和敏感性分析技术,即基于物理的空间分布式地下水流建模。计算出的主要地下水流入和流出量包括边界交换、抽水、饱和多余流量、地下水-地表水交换、补给、地下水-湖泊交换和瓦片排水流出量。我们介绍了该方法在美国不同地区 16 年(2000-2015 年)的四个流域的应用情况,重点介绍了大面积瓦片排水(明尼苏达州温尼贝戈河、爱荷华州)、密集的地表水-地下水相互作用(特拉华州南蒂科克河、马里兰州)、地下水抽水灌溉(密苏里州卡奇河、阿肯色州)和高山融雪(科罗拉多州阿肯色河源)等地区的应用情况。SWAT+gwflow 耦合模型的主要参数是利用参数估计软件 PEST 估算的。根据纳什-萨特克利夫效率指数 (NSE)、偏差百分比 (PBIAS)、判定系数 (R2) 和克林-古普塔效率系数 (KGE),对 SWAT+gwflow 整体模型的月径流量进行评估,并利用平均绝对误差 (MAE) 对地下水水头进行评估。采用莫里斯方法确定影响水文通量的关键参数。此外,还采用了迭代集合平滑器(iES)作为不确定性量化(UQ)和参数估计(PE)技术,并降低了因参数数量庞大而产生的计算成本。根据流域情况,确定的主要选定参数包括含水层比容、含水层水导率、补给延迟、河床厚度、河床水导率、地下水流入瓦片的面积、瓦片在地表以下的深度、排水沟周边的水导率、河流深度(针对地下水流过程)、径流曲线数(针对地表径流过程)、植物吸收补偿因子、土壤蒸发补偿因子(针对潜在和实际蒸散过程)、土壤可用水量和渗滤系数(针对土壤水过程)。gwflow 参数的存在允许识别地表和/或地下水流过程中的所有关键参数,与使用 SWAT+ 基本模型的结果有很大不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology and Earth System Sciences
Hydrology and Earth System Sciences 地学-地球科学综合
CiteScore
10.10
自引率
7.90%
发文量
273
审稿时长
15 months
期刊介绍: Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.
期刊最新文献
Exploring the joint probability of precipitation and soil moisture over Europe using copulas Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+ Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1