Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe

IF 5.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Hydrology and Earth System Sciences Pub Date : 2023-11-14 DOI:10.5194/hess-27-4087-2023
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, Wouter Dorigo
{"title":"Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe","authors":"Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, Wouter Dorigo","doi":"10.5194/hess-27-4087-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in observations or simulations or both. We perform bias-blind and bias-aware DA of Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–2019 period, and we evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture. In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. While comparisons to in situ soil moisture in areas with weak bias indicate an improvement of the representation of soil moisture climatology, bias-blind LAI DA can lead to unrealistic shifts in soil moisture climatology in areas with strong bias. For example, when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated, LAI will be increased and soil moisture will be depleted. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between DA updates, because each update pushes the Noah-MP leaf model to an unstable state. This model drift also propagates to short-term estimates of GPP and ET and to internal DA diagnostics that indicate a suboptimal DA system performance. The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements in GPP anomalies from the bias-blind DA but forego improvements in the root mean square deviations (RMSDs) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"15 15","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-4087-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in observations or simulations or both. We perform bias-blind and bias-aware DA of Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–2019 period, and we evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture. In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. While comparisons to in situ soil moisture in areas with weak bias indicate an improvement of the representation of soil moisture climatology, bias-blind LAI DA can lead to unrealistic shifts in soil moisture climatology in areas with strong bias. For example, when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated, LAI will be increased and soil moisture will be depleted. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between DA updates, because each update pushes the Noah-MP leaf model to an unstable state. This model drift also propagates to short-term estimates of GPP and ET and to internal DA diagnostics that indicate a suboptimal DA system performance. The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements in GPP anomalies from the bias-blind DA but forego improvements in the root mean square deviations (RMSDs) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲地区Noah-MP陆面模式中叶面积指数的盲同化和敏感同化
摘要遥感叶面积指数(LAI)的数据同化(DA)有助于改善地表模式对能量、水和碳变量的估算。到目前为止,大多数研究都使用了偏盲LAI DA方法,即不校正模型预测与观测之间的偏差。这可能会妨碍数据分析算法在观测或模拟或两者都有较大偏差的情况下的性能。我们将哥白尼全球土地服务LAI的盲偏和觉偏数据应用于2002-2019年欧洲地区ERA5再分析强迫的Noah-MP陆面模型中,并评估了偏差校正的选择如何影响总初级生产力(GPP)、蒸散发(ET)、径流和土壤湿度的估算。在LAI偏差较大的地区,偏差盲LAI数据减少了观测值与模拟值之间的偏差,提高了GPP、ET和径流估计值与独立产品的一致性,但土壤湿度估计值与欧洲航天局气候变化倡议(ESA CCI)土壤湿度产品的一致性。在偏倚较弱的地区,与原位土壤湿度的比较表明土壤湿度气候学的表征有所改善,但偏倚盲目的LAI数据可能导致偏倚较强的地区土壤湿度气候学发生不切实际的变化。例如,当灌区同化的LAI数据远高于未激活任何灌溉的模拟数据时,LAI会增加,土壤水分会枯竭。此外,由于数据更新之间的模型漂移,偏差盲LAI数据产生明显的锯齿形模式,因为每次更新都会将Noah-MP叶模型推向不稳定状态。这种模型漂移还传播到GPP和ET的短期估计,以及表明非最佳数据分析系统性能的内部数据分析诊断。基于先验地将LAI观测值重新标度到模式气候学的偏差感知方法避免了偏差盲目同化的负面影响。他们保留了偏盲数据对GPP异常的改善,但放弃了GPP、ET和径流的均方根偏差(rmsd)的改善。作为重新缩放的替代方案,我们讨论了我们的结果对模型校准或联合参数和状态更新数据分析的影响,这有可能将偏差减少与最佳数据分析系统性能结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology and Earth System Sciences
Hydrology and Earth System Sciences 地学-地球科学综合
CiteScore
10.10
自引率
7.90%
发文量
273
审稿时长
15 months
期刊介绍: Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.
期刊最新文献
Exploring the joint probability of precipitation and soil moisture over Europe using copulas Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+ Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1