James A. Stewart, Jacob K. Startt, Remi Dingreville
{"title":"A molecular dynamics study on the Mie-Grüneisen equation-of-state and high strain-rate behavior of equiatomic CoCrFeMnNi","authors":"James A. Stewart, Jacob K. Startt, Remi Dingreville","doi":"10.1080/21663831.2023.2280635","DOIUrl":null,"url":null,"abstract":"Through atomistic simulations, we uncover the dynamic properties of the Cantor alloy under shock-loading conditions and characterize its equation-of-state over a wide range of densities and pressures along with spall strength at ultra-high strain rates. Simulation results reveal the role of local phase transformations during the development of the shock wave on the alloy's high spall strength. The simulated shock Hugoniot results are in remarkable agreement with experimental data, validating the predictability of the model. These mechanistic insights along with the quantification of dynamical properties can drive further advancements in various applications of this class of alloys under extreme environments.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"37 29","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2280635","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Through atomistic simulations, we uncover the dynamic properties of the Cantor alloy under shock-loading conditions and characterize its equation-of-state over a wide range of densities and pressures along with spall strength at ultra-high strain rates. Simulation results reveal the role of local phase transformations during the development of the shock wave on the alloy's high spall strength. The simulated shock Hugoniot results are in remarkable agreement with experimental data, validating the predictability of the model. These mechanistic insights along with the quantification of dynamical properties can drive further advancements in various applications of this class of alloys under extreme environments.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.