Unconventional { 10 1 ¯ 2 } twinning assisted by pyramidal II stacking faults.

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Letters Pub Date : 2024-10-28 eCollection Date: 2025-01-01 DOI:10.1080/21663831.2024.2406910
Yang Hu, Dennis M Kochmann
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Unconventional <ns0:math><ns0:mo>{</ns0:mo> <ns0:mrow><ns0:mn>10</ns0:mn> <ns0:mrow><ns0:mover><ns0:mn>1</ns0:mn> <ns0:mo>¯</ns0:mo></ns0:mover> </ns0:mrow> <ns0:mn>2</ns0:mn></ns0:mrow> <ns0:mo>}</ns0:mo></ns0:math> twinning assisted by pyramidal II stacking faults.","authors":"Yang Hu, Dennis M Kochmann","doi":"10.1080/21663831.2024.2406910","DOIUrl":null,"url":null,"abstract":"<p><p>Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed <math><mrow><mo>{</mo> <mn>10</mn> <mrow><mover><mn>1</mn> <mo>¯</mo></mover> </mrow> <mn>2</mn> <mo>}</mo></mrow> </math> tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal <math><mrow><mo>{</mo> <mn>10</mn> <mrow><mover><mn>1</mn> <mo>¯</mo></mover> </mrow> <mn>2</mn> <mo>}</mo></mrow> </math> twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements. This introduces an alternative twin nucleation mechanism, different from the classically accepted mechanism of dislocation dissociation.</p>","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"13 1","pages":"1-8"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2406910","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed { 10 1 ¯ 2 } tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal { 10 1 ¯ 2 } twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements. This introduces an alternative twin nucleation mechanism, different from the classically accepted mechanism of dislocation dissociation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非常规{10 1¯2}孪晶由锥体II型叠层断层辅助。
孪晶对六方密排Mg的变形行为有显著影响,因此深入了解孪晶成核和生长机制是提高Mg基材料性能的必要条件。通常观察到的{10¯2}张力孪晶传统上与< c + a >位错解离有关,这导致具有比单个孪晶位错大几倍的伯格矢量的带状位错和一些残余位错。相反,我们的分子动力学模拟显示,在没有剪切位移的情况下,锥体II层错通过原子洗牌形成{10¯2}孪核。这引入了一种替代的孪核机制,不同于经典接受的位错解离机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
期刊最新文献
Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework Unconventional { 10 1 ¯ 2 } twinning assisted by pyramidal II stacking faults. A novel atomic mechanism of fcc → hcp → bcc phase transition in a gradient nanostructured compositionally complex alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1