Log-rank and stratified log-rank tests

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2023-10-05 DOI:10.1080/24754269.2023.2263720
Ting Ye, Jun Shao, Yanyao Yi
{"title":"Log-rank and stratified log-rank tests","authors":"Ting Ye, Jun Shao, Yanyao Yi","doi":"10.1080/24754269.2023.2263720","DOIUrl":null,"url":null,"abstract":"In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"55 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2263720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank test without adjusting for baseline covariates is asymptotically valid for treatment effect under simple randomization of treatments but is too conservative under covariate-adaptive randomization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by stratification, is asymptotically valid regardless of what treatment randomization is applied. In the literature, however, under simple randomization there is no affirmative conclusion about whether the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test. In this article we show when the stratified and unstratified log-rank tests aim for the same null hypothesis and that, under simple randomization, the stratified log-rank test is asymptotically more powerful than the unstratified log-rank test in the region of alternative hypothesis that is specified by a Cox proportional hazards model. We also provide some discussion about why we do not have an affirmative conclusion in general.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Log-rank和分层Log-rank检验
在具有右审查事件发生时间结果的随机临床试验中,未调整基线协变量的流行对数秩检验在治疗的简单随机化下对治疗效果渐近有效,但在协变量自适应随机化下过于保守。分层对数秩检验通过分层来调整检验过程中的基线协变量,无论采用何种随机化治疗,该检验都是渐近有效的。然而,在文献中,在简单随机化的情况下,没有关于分层对数秩检验是否渐近地比非分层对数秩检验更有效的肯定结论。在本文中,我们展示了当分层和非分层log-rank检验针对相同的零假设时,在简单随机化下,分层log-rank检验在由Cox比例风险模型指定的可选假设区域内渐近地比非分层log-rank检验更强大。我们也提供了一些讨论,为什么我们没有一个肯定的结论一般。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1